imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NTB0104

Dual supply translating transceiver; auto direction sensing; 3-state

Rev. 4 — 19 April 2018

Product data sheet

1. General description

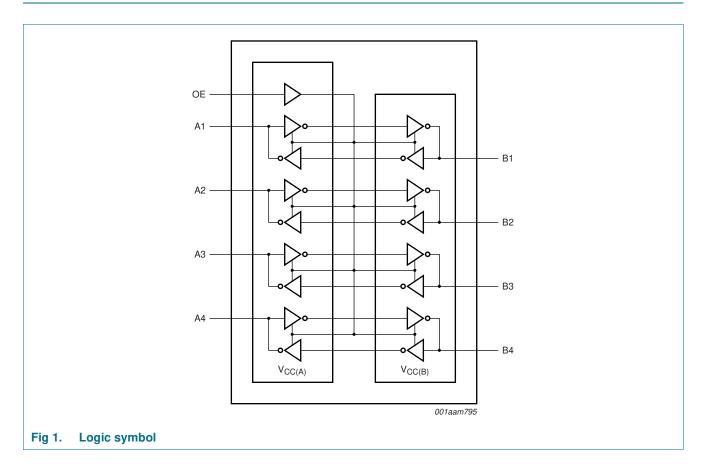
The NTB0104 is a 4-bit, dual supply translating transceiver with auto direction sensing, that enables bidirectional voltage level translation. It features two 4-bit input-output ports (An and Bn), one output enable input (OE) and two supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). $V_{CC(A)}$ can be supplied at any voltage between 1.2 V and 3.6 V and $V_{CC(B)}$ can be supplied at any voltage between 1.65 V, making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V and 5.0 V).

Pins An and OE are referenced to $V_{CC(A)}$ and pins Bn are referenced to $V_{CC(B)}$. A LOW level at pin OE causes the outputs to assume a high-impedance OFF-state. This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

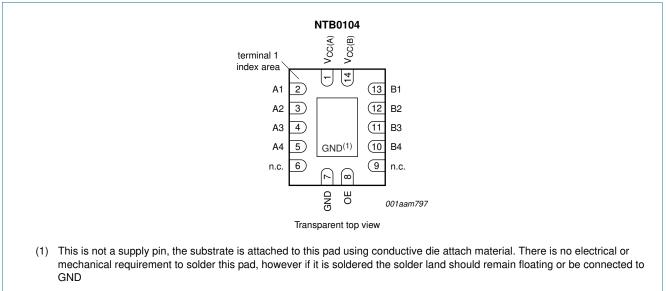
- Wide supply voltage range:
 - ◆ V_{CC(A)}: 1.2 V to 3.6 V and V_{CC(B)}: 1.65 V to 5.5 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Inputs accept voltages up to 5.5 V
- ESD protection:
 - ◆ HBM JESD22-A114E Class 2 exceeds 2500 V for A port
 - HBM JESD22-A114E Class 3B exceeds 15000 V for B port
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1500 V (For NTB0104UK 1000 V)
- Latch-up performance exceeds 100 mA per JESD 78B Class II
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

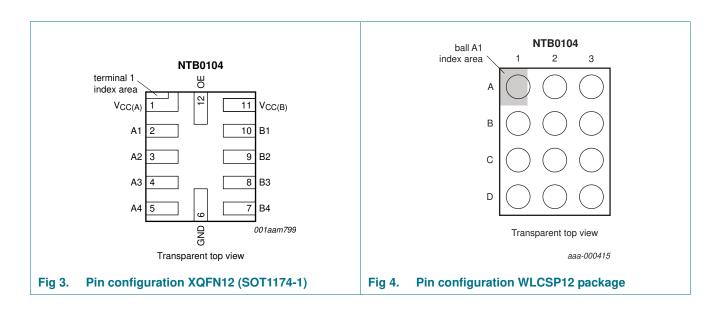

Table 1. Ordering information										
Type number	Topside	Package								
	marking	Name	Description	Version						
NTB0104BQ	B0104	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1						
NTB0104GU12	t4	XQFN12	plastic, extremely thin quad flat package; no leads; 12 terminals; body 1.70 \times 2.0 \times 0.50 mm	SOT1174-1						
NTB0104UK	t04	WLCSP12	wafer level chip-size package, 12 bumps; body 1.20 \times 1.60 \times 0.56 mm. (Backside Coating included)	NTB0104UK						

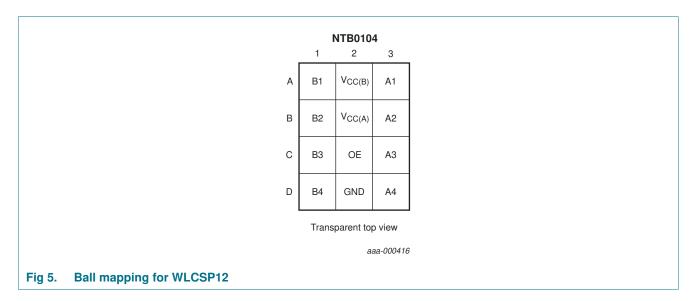
3.1 Ordering options

Table 2. Ordering options


Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
NTB0104BQ	NTB0104BQ,115	DHVQFN14	REEL 7" Q1/T1 *STANDARD MARK SMD	3000	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$
NTB0104GU12	NTB0104GU12,115	XQFN12	REEL 7" Q1/T1 *STANDARD MARK SMD	4000	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$
NTB0104UK	NTB0104UK,012	WLCSP12	REEL 7" Q1/T1 *SPECIAL MARK CHIPS DP	5000	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$

4. Functional diagram




5. Pinning information

5.1 Pinning

Fig 2. Pin configuration DHVQFN14 (SOT762-1)

5.2 Pin description

Table 3. Pin description

Symbol	Pin		Ball	Description
	SOT762-1	SOT1174-1	WLCSP12	
V _{CC(A)}	1	1	B2	supply voltage A
A1, A2, A3, A4	2, 3, 4, 5	2, 3, 4, 5	A3, B3, C3, D3	data input or output (referenced to $V_{CC(A)}$)
n.c.	6, 9	-	-	not connected
GND	7	6	D2	ground (0 V)
OE	8	12	C2	output enable input (active HIGH; referenced to $V_{CC(A)})$
B4, B3, B2, B1	10, 11, 12, 13	7, 8, 9, 10	D1, C1, B1, A1	data input or output (referenced to $V_{CC(B)}$)
V _{CC(B)}	14	11	A2	supply voltage B

6. Functional description

Table 4. Function table^[1]

Supply voltage		Input	Input/output		
V _{CC(A)} V _{CC(B)}		OE	An	Bn	
1.2 V to V _{CC(B)}	1.65 V to 5.5 V	L	Z	Z	
1.2 V to V _{CC(B)}	1.65 V to 5.5 V	Н	input or output	output or input	
GND ^[2]	GND ^[2]	Х	Z	Z	

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

[2] When either $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into power-down mode.

Limiting values 7.

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			-0.5	+6.5	V
V _{CC(B)}	supply voltage B			-0.5	+6.5	V
VI	input voltage		[1]	-0.5	+6.5	V
Vo	output voltage	Active mode	[1][2][3]	-0.5	V _{CCO} + 0.5	V
		Power-down or 3-state mode	[1]	-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
lo	output current	$V_{O} = 0 V$ to V_{CCO}	[2]	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}		-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[4]	-	250	mW

[1] The minimum input and minimum output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output.

[3] V_{CCO} + 0.5 V should not exceed 6.5 V.

[4] For DHVQFN14 packages: above 60 °C the value of Ptot derates linearly with 4.5 mW/K. For XQFN12 packages: above 128 °C the value of P_{tot} derates linearly with 11.5 mW/K.

Recommended operating conditions 8.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		1.2	3.6	V
V _{CC(B)}	supply voltage B		1.65	5.5	V
VI	input voltage		0	5.5	V
Vo	output voltage	Power-down or 3-state mode; $V_{CC(A)} = 1.2 V \text{ to } 3.6 V;$ $V_{CC(B)} = 1.65 V \text{ to } 5.5 V$			
		A port	0	3.6	V
		B port	0	5.5	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate		-	40	ns/V

.[1][2]

[1] The A and B sides of an unused I/O pair must be held in the same state, both at V_{CCI} or both at GND.

[2] $V_{CC(A)}$ must be less than or equal to $V_{CC(B)}$.

9. Static characteristics

Table 7. Typical static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	A port; $V_{CC(A)} = 1.2 \text{ V}$; $I_O = -20 \mu\text{A}$		-	1.1	-	V
V _{OL}	LOW-level output voltage	A port; $V_{CC(A)} = 1.2 \text{ V}$; $I_O = 20 \mu\text{A}$		-	0.09	-	V
lı	input leakage current	OE input; V _I = 0 V to 3.6 V; V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V		-	-	±1	μA
l _{oz}	OFF-state output current	A or B port; $V_O = 0$ V to V_{CCO} ; $V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V	[1]	-	-	±1	μA
I _{OFF}	power-off leakage current	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0$ V to 5.5 V		-	-	±1	μA
		B port; V ₁ or V _O = 0 V to 5.5 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0 V to 3.6 V		-	-	±1	μA
I _{CC}	supply current	$V_I = 0 V \text{ or } V_{CCI}; I_O = 0 A$	[2]				
		$I_{CC(A)}$; $V_{CC(A)} = 1.2$ V; $V_{CC(B)} = 1.65$ V to 5.5 V		-	0.05	-	μA
		$I_{CC(B)}$; $V_{CC(A)} = 1.2$ V; $V_{CC(B)} = 1.65$ V to 5.5 V		-	3.3	-	μA
		$I_{CC(A)} + I_{CC(B)}; V_{CC(A)} = 1.2 \text{ V}; V_{CC(B)} = 1.65 \text{ V} \text{ to } 5.5 \text{ V}$		-	3.5	-	μA
Cı	input capacitance	OE input; $V_{CC(A)}$ = 1.2 V to 3.6 V; $V_{CC(B)}$ = 1.65 V to 5.5 V		-	2.8	-	pF
C _{I/O}	input/output	A port; $V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V		-	4.0	-	pF
	capacitance	B port; V _{CC(A)} = 1.2 V to 3.6 V; V _{CC(B)} = 1.65 V to 5.5 V		-	7.5	-	pF

[1] V_{CCO} is the supply voltage associated with the output.

[2] V_{CCI} is the supply voltage associated with the input.

Table 8. Typical supply current

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); T_{amb} = 25 °C.

V _{CC(A)}	V _{CC(B)}	V _{CC(B)}									
	1.8 V	1.8 V		2.5 V		3.3 V		5.0 V			
	I _{CC(A)}	I _{CC(B)}									
1.2 V	10	10	10	10	10	20	10	1050	nA		
1.5 V	10	10	10	10	10	10	10	650	nA		
1.8 V	10	10	10	10	10	10	10	350	nA		
2.5 V	-	-	10	10	10	10	10	40	nA		
3.3 V	-	-	-	-	10	10	10	10	nA		

Table 9. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
				Min	Max	Min	Max	-
V _{IH}	HIGH-level	A or B port and OE input	[1]					
	input voltage			0.65V _{CCI}	-	0.65V _{CCI}	-	V
V _{IL}	LOW-level	A or B port and OE input	[1]					
	input voltage			-	0.35V _{CCI}	-	0.35V _{CCI}	V
V _{OH}	HIGH-level	A or B port; $I_0 = -20 \ \mu A$	[2]					
	output voltage	A port; $V_{CC(A)} = 1.4$ V to 3.6 V		$V_{CCO}-0.4$	-	$V_{CCO}-0.4$	-	V
		B port; $V_{CC(B)} = 1.65$ V to 5.5 V		$V_{CCO}-0.4$	-	$V_{CCO}-0.4$	-	V
V _{OL} LOV	LOW-level	A or B port; $I_0 = 20 \ \mu A$	[2]					
	output voltage	A port; $V_{CC(A)} = 1.4$ V to 3.6 V		-	0.4	-	0.4	V
		B port; $V_{CC(B)} = 1.65$ V to 5.5 V		-	0.4	-	0.4	V
II	input leakage current	$\begin{array}{l} \text{OE input; V}_{I} = 0 \text{ V to } 3.6 \text{ V;} \\ \text{V}_{\text{CC}(A)} = 1.2 \text{ V to } 3.6 \text{ V;} \\ \text{V}_{\text{CC}(B)} = 1.65 \text{ V to } 5.5 \text{ V} \end{array}$		-	±2	-	±5	μA
I _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = 1.2$ V to 3.6 V; $V_{CC(B)} = 1.65$ V to 5.5 V	[2]	-	±2	-	±10	μA
011	power-off leakage	A port; V _I or V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0 V to 5.5 V		-	±2	-	±10	μA
	current	$ \begin{array}{l} B \mbox{ port; } V_{I} \mbox{ or } V_{O} = 0 \mbox{ V to } 5.5 \mbox{ V;} \\ V_{CC(B)} = 0 \mbox{ V; } V_{CC(A)} = 0 \mbox{ V to } 3.6 \mbox{ V} \end{array} $		-	±2	-	±10	μA

Table 9. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		_40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
				Min	Мах	Min	Max	
I _{CC}	supply current	$V_I = 0 V \text{ or } V_{CCI}; I_O = 0 A$	<u>[1]</u>					
		I _{CC(A)}						
		$\begin{array}{l} OE = LOW; \\ V_{CC(A)} = 1.4 \ V \ to \ 3.6 \ V; \\ V_{CC(B)} = 1.65 \ V \ to \ 5.5 \ V \end{array}$		-	5	-	15	μA
		$\begin{array}{l} {\sf OE} = {\sf HIGH}; \\ {\sf V}_{{\sf CC}({\sf A})} = 1.4 \; {\sf V} \; {\sf to} \; 3.6 \; {\sf V}; \\ {\sf V}_{{\sf CC}({\sf B})} = 1.65 \; {\sf V} \; {\sf to} \; 5.5 \; {\sf V} \end{array}$		-	5	-	20	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-	2	-	15	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$		-	-2	-	-15	μA
		I _{CC(B)}						
		$\begin{array}{l} {\sf OE} = {\sf LOW}; \\ {\sf V}_{{\sf CC}({\sf A})} = 1.4 \ {\sf V} \ {\sf to} \ 3.6 \ {\sf V}; \\ {\sf V}_{{\sf CC}({\sf B})} = 1.65 \ {\sf V} \ {\sf to} \ 5.5 \ {\sf V} \end{array}$		-	5	-	15	μA
		$\begin{array}{l} {\sf OE} = {\sf HIGH}; \\ {\sf V}_{{\sf CC}({\sf A})} = 1.4 \; {\sf V} \; {\sf to} \; 3.6 \; {\sf V}; \\ {\sf V}_{{\sf CC}({\sf B})} = 1.65 \; {\sf V} \; {\sf to} \; 5.5 \; {\sf V} \end{array}$		-	5	-	20	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-	-2	-	-15	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 5.5 V$		-	2	-	15	μA
		$I_{CC(A)} + I_{CC(B)}$						
		$V_{CC(A)} = 1.4 V \text{ to } 3.6 V;$ $V_{CC(B)} = 1.65 V \text{ to } 5.5 V$		-	10	-	40	μA

[1] V_{CCI} is the supply voltage associated with the input.

[2] V_{CCO} is the supply voltage associated with the output.

10. Dynamic characteristics

Table 10. Typical dynamic characteristics for temperature 25 °C^[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for waveforms see Figure 6 and Figure 7.

Symbol	Parameter	Conditions		V _{CC(B)}				
				1.8 V	2.5 V	3.3 V	5.0 V	
$V_{CC(A)} = 1$	I.2 V; T _{amb} = 25 °C							
t _{pd}	propagation delay	A to B		5.9	4.8	4.4	4.2	ns
		B to A		5.6	4.8	4.5	4.4	ns
t _{en}	enable time	OE to A, B		0.5	0.5	0.5	0.5	μS
t _{dis}	disable time	OE to A; no external load	<u>[2]</u>	8.3	8.3	8.3	8.3	ns
		OE to B; no external load	<u>[2]</u>	10.4	9.4	9.3	8.8	ns
		OE to A		81	69	83	68	ns
		OE to B		81	69	83	68	ns
t _t	transition time	A port		4.0	4.0	4.1	4.1	ns
		B port		2.6	2.0	1.7	1.4	ns

Table 10. Typical dynamic characteristics for temperature 25 °C^[1] ... continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for waveforms see Figure 6 and Figure 7.

Symbol	Parameter	Conditions			Unit			
				1.8 V	2.5 V	3.3 V	5.0 V	
t _{sk(o)}	output skew time	between channels	[3]	0.2	0.2	0.2	0.2	ns
t _W	pulse width	data inputs		15	13	13	13	ns
f _{data}	data rate			70	80	80	80	Mbps

[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

 t_{en} is the same as t_{PZL} and t_{PZH} .

 t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$

 t_t is the same as t_{THL} and t_{TLH}

[2] Delay between OE going LOW and when the outputs are actually disabled.

[3] Skew between any two outputs of the same package switching in the same direction.

Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 8</u>; for wave forms see <u>Figure 6</u> and <u>Figure 7</u>.

Symbol	Parameter	Conditions		V _{CC(B)}								Unit
				1.8 V \pm 0.15 V		2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	
					Max	Min	Max	Min	Max	Min	Max	-
V _{CC(A)} =	1.5 V \pm 0.1 V	1										
t _{pd}	propagation	A to B		1.4	12.9	1.2	10.1	1.1	10.0	0.8	9.9	ns
	delay	B to A		0.9	14.2	0.7	12.0	0.4	11.7	0.3	13.7	ns
t _{en}	enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μs
t _{dis}	disable time	OE to A; no external load	[2]	1.0	12.9	1.0	12.9	1.0	12.9	1.0	12.9	ns
		OE to B; no external load	[2]	1.0	18.7	1.0	15.8	1.0	15.1	1.0	14.4	ns
		OE to A		-	320	-	260	-	260	-	280	ns
		OE to B		-	200	-	200	-	200	-	200	ns
tt	transition	A port		0.9	5.1	0.9	5.1	0.9	5.1	0.9	5.1	ns
ti	time	B port		0.9	4.7	0.6	3.2	0.5	2.5	0.4	2.7	ns
t _{sk(o)}	output skew time	between channels	[3]	-	0.5	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		25	-	25	-	25	-	25	-	ns
f _{data}	data rate			-	40	-	40	-	40	-	40	Mbps
V _{CC(A)} =	$\textbf{1.8 V} \pm \textbf{0.15 V}$				1	1				1	1	1
t _{pd}	propagation	A to B		1.6	11.0	1.4	7.7	1.3	6.8	1.2	6.5	ns
	delay	B to A		1.5	12.0	1.3	8.4	1.0	7.6	0.9	7.1	ns
t _{en}	enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	1.0	11.7	1.0	11.7	1.0	11.7	1.0	11.7	ns
		OE to B; no external load	[2]	1.0	16.9	1.0	14.5	1.0	13.7	1.0	12.7	ns
		OE to A		-	260	-	230	-	230	-	230	ns
		OE to B		-	200	-	200	-	200	-	200	ns
tt	transition	A port		0.8	4.1	0.8	4.1	0.8	4.1	0.8	4.1	ns
	time	B port		0.9	4.7	0.6	3.2	0.5	2.5	0.4	2.7	ns

Symbol	Parameter	Conditions		V _{CC(B)}								Unit
				$\textbf{1.8 V} \pm \textbf{0.15 V}$		$\textbf{2.5 V} \pm \textbf{0.2 V}$		3.3 V \pm 0.3 V		5.0 V \pm 0.5 V		-
				Min	Max	Min	Max	Min	Max	Min	Max	
t _{sk(o)}	output skew time	between channels	<u>[3]</u>	-	0.5	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		20	-	17	-	17	-	17	-	ns
f _{data}	data rate			-	49	-	60	-	60	-	60	Mbps
$V_{CC(A)} =$	$\textbf{2.5 V} \pm \textbf{0.2 V}$											
t _{pd}	propagation	A to B		-	-	1.1	6.3	1.0	5.2	0.9	4.7	ns
	delay	B to A		-	-	1.2	6.6	1.1	5.1	0.9	4.4	ns
t _{en}	enable time	OE to A, B		-	-	-	1.0	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	-	-	1.0	9.7	1.0	9.7	1.0	9.7	ns
		OE to B; no external load	[2]	-	-	1.0	12.9	1.0	12.0	1.0	11.0	ns
		OE to A		-	-	-	200	-	200	-	200	ns
		OE to B		-	-	-	200	-	200	-	200	ns
t _t transition time	A port		-	-	0.7	3.0	0.7	3.0	0.7	3.0	ns	
	B port		-	-	0.7	3.2	0.5	2.5	0.4	2.7	ns	
t _{sk(o)}	output skew time	between channels	[3]	-	-	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		-	-	12	-	10	-	10	-	ns
f _{data}	data rate			-	-	-	85	-	100	-	100	Mbps
$V_{CC(A)} =$	3.3 V \pm 0.3 V			1			1		1		1	
t _{pd}	propagation	A to B		-	-	-	-	0.9	4.7	0.8	4.0	ns
	delay	B to A		-	-	-	-	1.0	4.9	0.9	3.8	ns
t _{en}	enable time	OE to A, B		-	-	-	-	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	-	-	-	-	1.0	9.4	1.0	9.4	ns
		OE to B; no external load	[2]	-	-	-	-	1.0	11.3	1.0	10.4	ns
		OE to A		-	-	-	-	-	260	-	260	ns
		OE to B		-	-	-	-	-	200	-	200	ns
t _t	transition	A port		-	-	-	-	0.7	2.5	0.7	2.5	ns
	time	B port		-	-	-	-	0.5	2.5	0.4	2.7	ns
t _{sk(o)}	putput skew time	between channels	[3]	-	-	-	-	-	0.5	-	0.5	ns
tw	pulse width	data inputs		-	-	-	-	10	-	10	-	ns
	data rate		-									Mbps

Table 11. Dynamic characteristics for temperature range -40 °C to +85 °C[1] ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7.

 t_t is the same as t_{THL} and t_{TLH}

[2] Delay between OE going LOW and when the outputs are actually disabled.

Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C^[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7.

Symbol	Parameter	Conditions		V _{CC(B)}								Unit
				1.8 V ±	0.15 V	2.5 V :	± 0.2 V	3.3 V :	± 0.3 V	5.0 V :	± 0.5 V	1
					Min Max		Min Max		Max	Min Max		
$V_{CC(A)} =$	$1.5~V\pm0.1~V$											
t _{pd}	propagation	A to B		1.4	15.9	1.2	13.1	1.1	13.0	0.8	12.9	ns
	delay	B to A		0.9	17.2	0.7	15.0	0.4	14.7	0.3	16.7	ns
t _{en}	enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	1.0	13.5	1.0	13.5	1.0	13.5	1.0	13.5	ns
		OE to B; no external load	[2]	1.0	19.9	1.0	16.8	1.0	16.1	1.0	15.2	ns
		OE to A		-	340	-	280	-	280	-	300	ns
		OE to B		-	220	-	220	-	220	-	220	ns
t _t	transition	A port		0.9	7.1	0.9	7.1	0.9	7.1	0.9	7.1	ns
	time	B port		0.9	6.5	0.6	5.2	0.5	4.8	0.4	4.7	ns
t _{sk(o)}	output skew time	between channels	[3]	-	0.5	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		25	-	25	-	25	-	25	-	ns
f _{data}	data rate			-	40	-	40	-	40	-	40	Mbps
	1.8 V ± 0.15 V											
t _{pd} propagation		A to B		1.6	14.0	1.4	10.7	1.3	9.8	1.2	9.5	ns
delay	B to A		1.5	15.0	1.3	11.4	1.0	10.6	0.9	10.1	ns	
t _{en}	enable time	OE to A, B		-	1.0	-	1.0	-	1.0	-	1.0	μS
t _{dis} disable time	disable time	OE to A; no external load	[2]	1.0	12.3	1.0	12.3	1.0	12.3	1.0	12.3	ns
		OE to B; no external load	[2]	1.0	18.1	1.0	15.3	1.0	14.5	1.0	13.5	ns
		OE to A		-	280	-	250	-	250	-	250	ns
		OE to B		-	220	-	220	-	220	-	220	ns
tt	transition	A port		0.8	6.2	0.8	6.1	0.8	6.1	0.8	6.1	ns
	time	B port		0.9	5.8	0.6	5.2	0.5	4.8	0.4	4.7	ns
t _{sk(o)}	output skew time	between channels	[3]	-	0.5	-	0.5	-	0.5	-	0.5	ns
tw	pulse width	data inputs		22	-	19	-	19	-	19	-	ns
f _{data}	data rate			-	45	-	55	-	55	-	55	Mbps
V _{CC(A)} =	$\textbf{2.5 V} \pm \textbf{0.2 V}$											
t _{pd}	propagation	A to B		-	-	1.1	9.3	1.0	8.2	0.9	7.7	ns
	delay	B to A		-	-	1.2	9.6	1.1	8.1	0.9	7.4	ns
t _{en}	enable time	OE to A, B		-	-	-	1.0	-	1.0	-	1.0	μS
t _{dis}	disable time	OE to A; no external load	[2]	-	-	1.0	10.1	1.0	10.1	1.0	10.1	ns
		OE to B; no external load	[2]	-	-	1.0	13.5	1.0	12.7	1.0	11.7	ns
		OE to A		-	-	-	220	-	220	-	220	ns
		OE to B		-	-	-	220	-	220	-	220	ns
t _t	transition	A port		-	-	0.7	5.0	0.7	5.0	0.7	5.0	ns
	time	B port		-	-	0.7	4.6	0.5	4.8	0.4	4.7	ns

Symbol Parameter Conditions V_{CC(B)} Unit $1.8 \ V \pm 0.15 \ V \ 2.5 \ V \pm 0.2 \ V \ 3.3 \ V \pm 0.3 \ V \ 5.0 \ V \pm 0.5 \ V$ Min Max Min Max Min Max Min Max [3] output skew between channels 0.5 0.5 0.5 _ _ _ _ ns t_{sk(o)} time pulse width data inputs; 14 13 10 tw _ _ -_ _ ns 75 100 Mbps f_{data} data rate -_ _ _ 80 - $V_{CC(A)} = 3.3 V \pm 0.3 V$ propagation A to B 0.9 7.7 0.8 7.0 t_{pd} -_ -ns delay B to A 1.0 7.9 0.9 6.8 ns ----OE to A, B enable time --1.0 -1.0 μS t_{en} ---[2] t_{dis} disable time OE to A; no external load _ _ _ _ 1.0 9.9 1.0 9.9 ns OE to B; no external load [2] -1.0 12.1 1.0 10.9 -_ ns OE to A -----280 -280 ns OE to B 220 _ _ _ _ --220 ns tt transition A port 0.7 4.5 0.7 4.5 ns -_ _ time B port 0.5 4.1 0.4 4.7 ns ----[3] t_{sk(o)} output skew between channels ---0.5 -0.5 ns -time data inputs tw pulse width _ _ _ _ 10 _ 10 _ ns 100 100 f_{data} data rate _ _ _ _ _ _ Mbps

Table 12. Dynamic characteristics for temperature range -40 °C to +125 °C[1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7.

 t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$

 t_t is the same as t_{THL} and t_{TLH}

[2] Delay between OE going LOW and when the outputs are actually disabled.

[3] Skew between any two outputs of the same package switching in the same direction.

Symbol	Parameter	Conditions	V _{CC(A)}							
			1.2 V	1.2 V	1.5 V	1.8 V	2.5 V	2.5 V	3.3 V	
				1		V _{CC(B)}				_
			1.8 V	5.0 V	1.8 V	1.8 V	2.5 V	5.0 V	3.3 V to 5.0 V	
T _{amb} = 2	5 °C									
C _{PD}	power dissipation capacitance	outputs enabled; $OE = V_{CC(A)}$								
		A port: (direction A to B)	5	5	5	5	5	5	5	pF
		A port: (direction B to A)	8	8	8	8	8	8	8	pF
		B port: (direction A to B)	18	18	18	18	18	18	18	pF
		B port: (direction B to A)	13	16	12	12	12	12	13	pF
		outputs disabled; OE = GND								
		A port: (direction A to B)	0.12	0.12	0.04	0.05	0.08	0.08	0.07	pF
		A port: (direction B to A)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
		B port: (direction A to B)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
		B port: (direction B to A)	0.07	0.09	0.07	0.07	0.05	0.09	0.09	pF

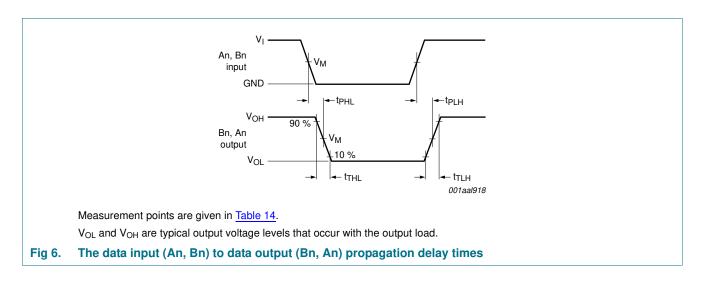
Table 13. Typical power dissipation capacitanceVoltages are referenced to GND (ground = 0 V).

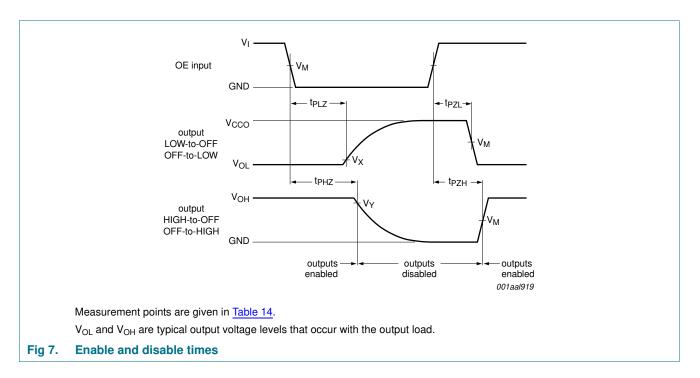
[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{0}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$


 $C_L = load capacitance in pF;$


 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

11. Waveforms

Table 14. Measurement points^[1]

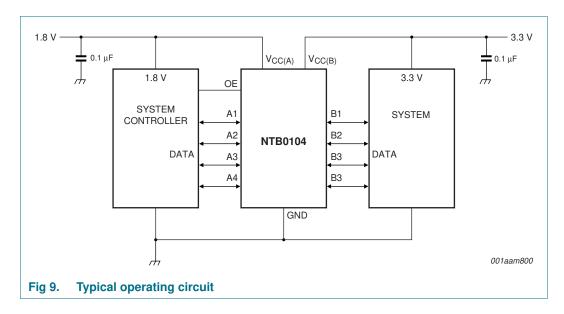
Supply voltage	Input	Output								
V _{cco}	V _M	V _M	V _X	V _Y						
1.2 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V						
$1.5~V\pm0.1~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V						
$1.8 \text{ V} \pm 0.15 \text{ V}$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V						
$2.5~V\pm0.2~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V						
$3.3~V\pm0.3~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V						
$5.0~V\pm0.5~V$	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V						

[1] V_{CCI} is the supply voltage associated with the input and V_{CCO} is the supply voltage associated with the output.

Table 15. Test data

Supply voltag	le	Input		Load		V _{EXT}		
V _{CC(A)}	V _{CC(B)}	VI <mark>[1]</mark>	$\Delta t / \Delta V$	CL	RL ^[2]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ^[3]}
1.2 V to 3.6 V	1.65 V to 5.5 V	V _{CCI}	\leq 1.0 ns/V	15 pF	50 kΩ, 1 MΩ	open	open	2V _{CCO}

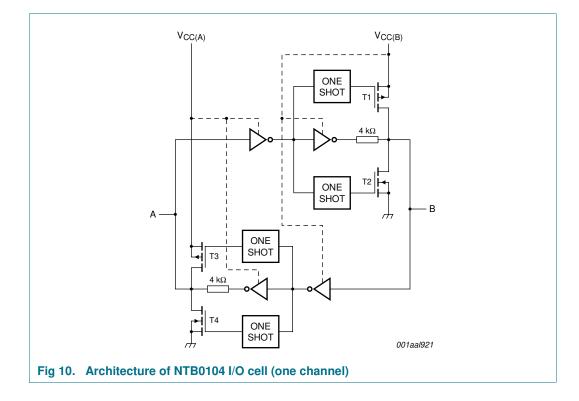
[1] V_{CCI} is the supply voltage associated with the input.


[2] For measuring data rate, pulse width, propagation delay and output rise and fall measurements, $R_L = 1 M\Omega$; for measuring enable and disable times, $R_L = 50 k\Omega$.

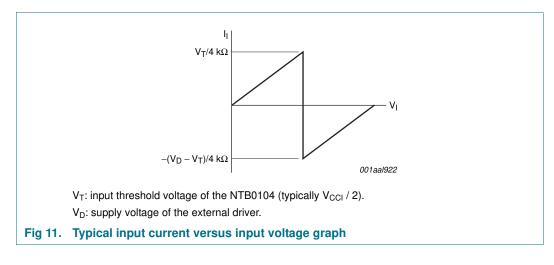
[3] V_{CCO} is the supply voltage associated with the output.

12. Application information

12.1 Applications


Voltage level-translation applications. The NTB0104 can be used to interface between devices or systems operating at different supply voltages. See <u>Figure 9</u> for a typical operating circuit using the NTB0104.

NTB0104


12.2 Architecture

The architecture of the NTB0104 is shown in Figure 10. The device does not require an extra input signal to control the direction of data flow from A to B or from B to A. In a static state, the output drivers of the NTB0104 can maintain a defined output level, but the output architecture is designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing in the opposite direction. The output one shots detect rising or falling edges on the A or B ports. During a rising edge, the one shots turn on the PMOS transistors (T1, T3) for a short duration, accelerating the low-to-high transition. Similarly, during a falling edge, the one shots turn on the NMOS transistors (T2, T4) for a short duration, accelerating the high-to-low transition. During output transitions the typical output impedance is 70 Ω at V_{CCO} = 1.2 V to 1.8 V, 50 Ω at V_{CCO} = 1.8 V to 3.3 V and 40 Ω at V_{CCO} = 3.3 V to 5.0 V.

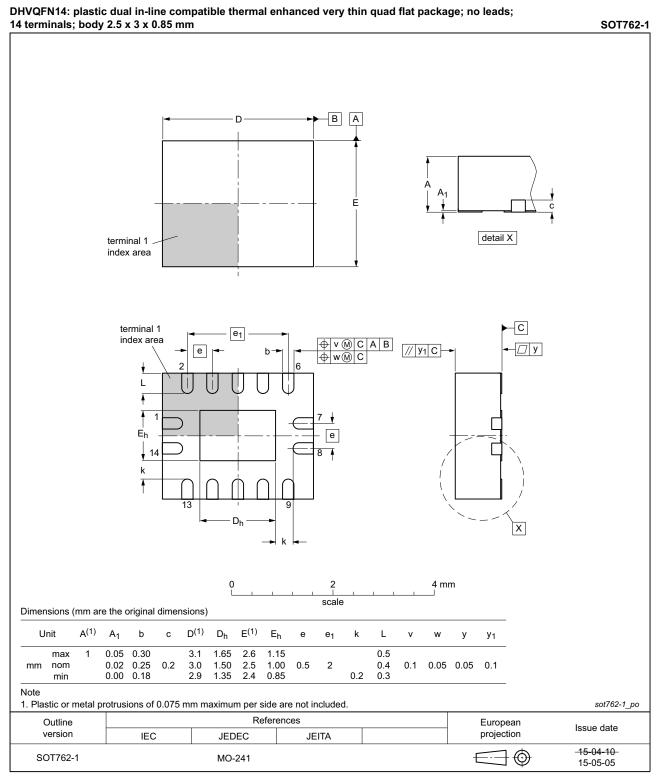
12.3 Input driver requirements

For correct operation, the device driving the data I/Os of the NTB0104 must have a minimum drive capability of ± 2 mA See <u>Figure 11</u> for a plot of typical input current versus input voltage.

12.4 Power up

During operation $V_{CC(A)}$ must never be higher than $V_{CC(B)}$, however during power-up $V_{CC(A)} \ge V_{CC(B)}$ does not damage the device, so either power supply can be ramped up first. There is no special power-up sequencing required. The NTB0104 includes circuitry that disables all output ports when either $V_{CC(A)}$ or $V_{CC(B)}$ is switched off.

12.5 Enable and disable


An output enable input (OE) is used to disable the device. Setting OE = LOW causes all I/Os to assume the high-impedance OFF-state. The disable time (t_{dis} with no external load) indicates the delay between when OE goes LOW and when outputs actually become disabled. The enable time (t_{en}) indicates the amount of time the user must allow for one one-shot circuitry to become operational after OE is taken HIGH. To ensure the high-impedance OFF-state during power-up or power-down, pin OE should be tied to GND through a pull-down resistor, the minimum value of the resistor is determined by the current-sourcing capability of the driver.

12.6 Pull-up or pull-down resistors on I/O lines

As mentioned previously the NTB0104 is designed with low static drive strength to drive capacitive loads of up to 70 pF. To avoid output contention issues, any pull-up or pull-down resistors used must be kept higher than 50 k Ω . For this reason the NTB0104 is not recommended for use in open drain driver applications such as 1-Wire or I²C. For these applications, the NTS0104 level translator is recommended.

NTB0104

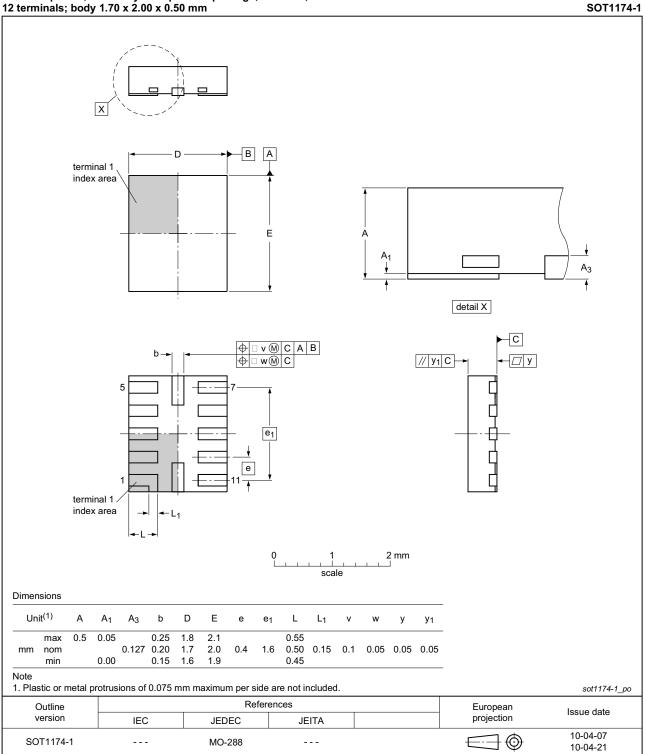

13. Package outline

Fig 12. Package outline SOT762-1 (DHVQFN14)

NTB0104

NTB0104

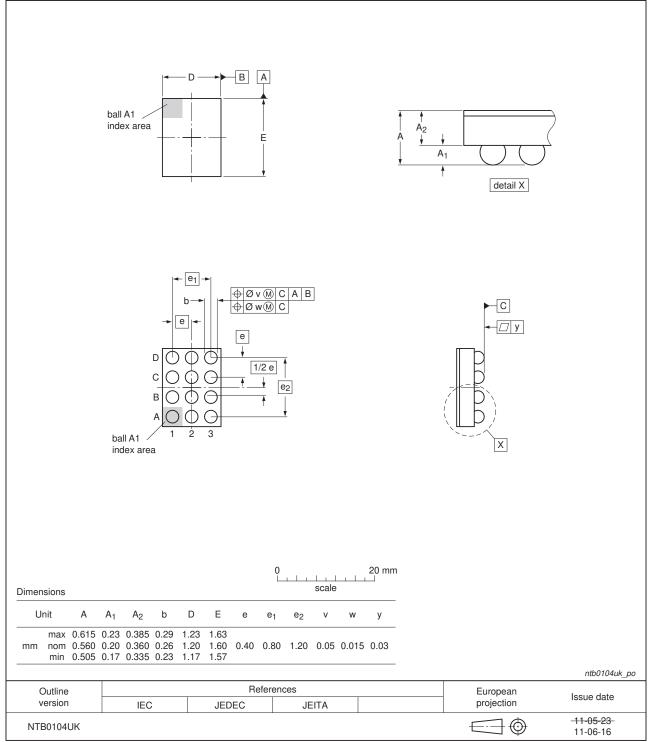
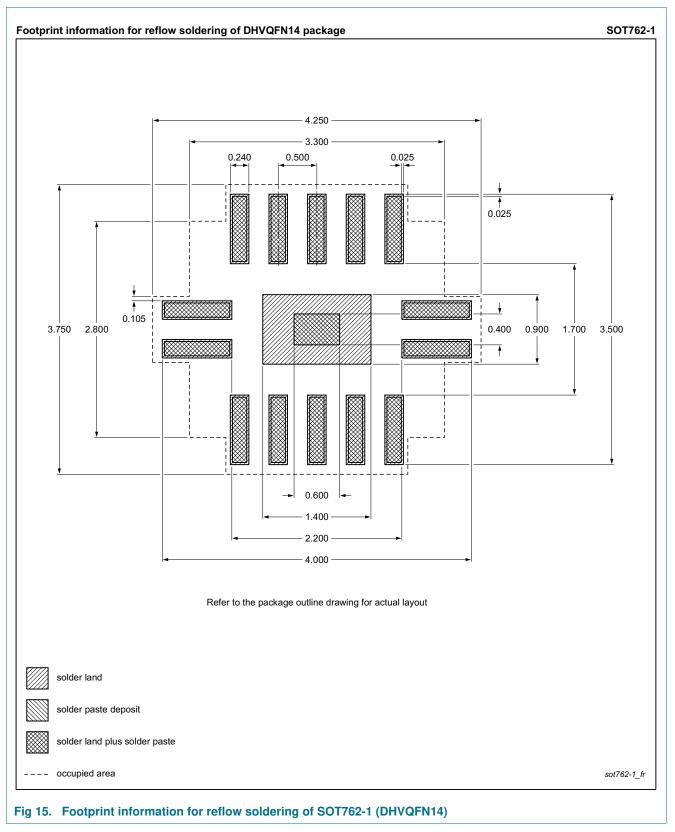
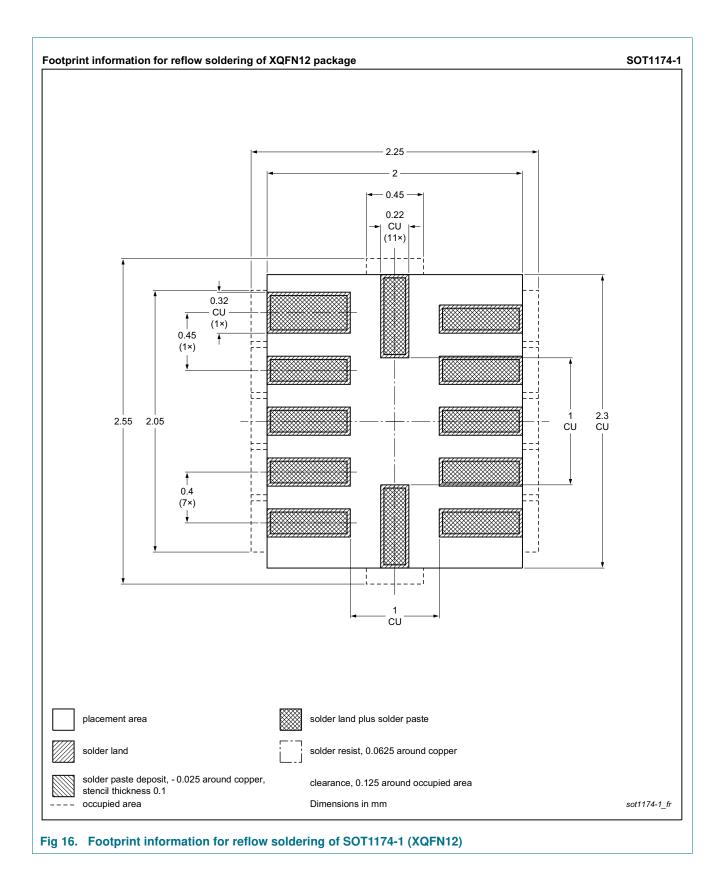

XQFN12: plastic, extremely thin quad flat package; no leads; 12 terminals; body 1.70 x 2.00 x 0.50 mm

Fig 13. Package outline SOT1174-1 (XQFN12)

WLCSP12: wafer level chip-size package, 12 bumps; body 1.20 x 1.60 x 0.56 mm. (Backside Coating included)



NTB0104


Fig 14. Package outline WLCSP12 package

14. Footprint information

NTB0104

NTB0104

NTB0104

15. Abbreviations

Table 16. Abbreviations							
Acronym	Description						
CDM	Charged Device Model						
CMOS	Complementary Metal Oxide Semiconductor						
DUT	Device Under Test						
ESD	ElectroStatic Discharge						
НВМ	Human Body Model						
MM	Machine Model						

16. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
NTB0104 v.4	20180419	Product data sheet	-	NTB0104 v.3				
Modifications:	 Figure 12 "Package outline SOT762-1 (DHVQFN14)": Added "k" heat pad to pin minimum gap dimension Added Section 3.1 "Ordering options", Section 14 "Footprint information" Removed Section 4 "Marking" Added topside marking to Table 1 "Ordering information" 							
NTB0104 v.3	20111110	Product data sheet	-	NTB0104 v.2				
Modifications:	Legal pages u	pdated.		•				
NTB0104 v.2	20111109	Product data sheet - NTB01						
NTB0104 v.1	20101026	Product data sheet	-	-				