

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET

-60 V, -27.5 A, P-Channel D²PAK

Designed for low voltage, high speed switching applications and to withstand high energy in the avalanche and commutation modes.

Features

- AEC O101 Oualified NVB25P06
- These Devices are Pb-Free and are RoHS Compliant

Typical Applications

- PWM Motor Controls
- Power Supplies
- Converters
- Bridge Circuits

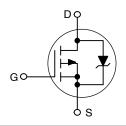
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-60	V
Gate-to-Source Voltage - Continuous - Non-Repetitive (t _p ≤ 10 ms)	V _{GS} V _{GSM}	±15 ±20	V Vpk
Drain Current - Continuous @ T _A = 25°C - Single Pulse (t _p ≤10 μs)	I _D I _{DM}	27.5 80	A Apk
Total Power Dissipation @ T _A = 25°C	P_{D}	120	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 25$ V, $V_{GS} = 10$ V, $I_{L(pk)} = 20$ A, L = 3 mH, $R_G = 25$ Ω)	E _{AS}	600	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2)	$egin{array}{c} R_{ heta JC} \ R_{ heta JA} \ R_{ heta JA} \end{array}$	1.25 46.8 63.2	°C/W
Maximum Lead Temperature for Soldering Purposes, (1/8" from case for 10 s)	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- When surface mounted to an FR4 board using 1" pad size (Cu Area 1.127 in²).
- When surface mounted to an FR4 board using the minimum recommended pad size (Cu Area 0.412 in²).

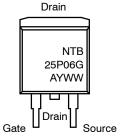
1



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
-60 V	65 m Ω @ –10 V	–27.5 A


P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

G

A = Assembly Location Y = Year WW = Work Week

ORDERING INFORMATION

= Pb-Free Package

Device	Package	Shipping [†]
NTB25P06T4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NVB25P06T4G	D ² PAK (Pb-Free)	800 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Cha	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Vo $(V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A})$ (Positive Temperature Coeffici	V _{(BR)DSS}	-60 -	- 64	- -	V mV/°C	
Zero Gate Voltage Drain Current $ (V_{GS} = 0 \text{ V, } V_{DS} = -60 \text{ V, } T_J = 25^{\circ}\text{C}) $ $ (V_{GS} = 0 \text{ V, } V_{DS} = -60 \text{ V, } , T_J = 150^{\circ}\text{C}) $		I _{DSS}	- -	- -	-10 -100	μΑ
Gate-Body Leakage Current (Vo	I _{GSS}	-	-	±100	nA	
ON CHARACTERISTICS (Note 3	3)					
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = -250 \mu A)$ (Negative Threshold Tempera	V _{GS(th)}	-2.0 -	-2.8 6.2	-4.0 -	V mV/°C	
Static Drain–Source On–State Resistance $(V_{GS} = -10 \text{ V}, I_D = -12.5 \text{ A})$ $(V_{GS} = -10 \text{ V}, I_D = -25 \text{ A})$		R _{DS(on)}	- -	0.065 0.070	0.075 0.082	Ω
Forward Transconductance (V _{DS} = -10 V, I _D = -12.5 A)	gFS	-	13	-	Mhos	
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	1200	1680	pF
Output Capacitance	$(V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V}, F = 1.0 \text{ MHz})$	C _{oss}	-	345	480	
Reverse Transfer Capacitance	,	C _{rss}	-	90	180	
SWITCHING CHARACTERISTIC	S (Notes 3 & 4)					
Turn-On Delay Time		t _{d(on)}	-	14	24	ns
Rise Time	(V _{DD} = −30 V, I _D = −25 A,	t _r	-	72	118	ns
Turn-Off Delay Time	$V_{GS} = -10 \text{ V R}_{G} = 9.1 \Omega$	t _{d(off)}	-	43	68	ns
Fall Time		t _f	-	190	320	ns
Gate Charge		Q_{T}	-	33	50	nC
	$(V_{DS} = -48 \text{ V, } I_D = -25 \text{ A,}$ $V_{GS} = -10 \text{ V)}$	Q ₁	-	6.5	-	
		Q ₂	-	15	-	1
BODY-DRAIN DIODE RATINGS	(Note 3)					
Diode Forward On-Voltage	$(I_S = -25 \text{ A}, V_{GS} = 0 \text{ V})$ $(I_S = -25 \text{ A}, V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C})$	V _{SD}	- -	-1.8 -1.4	-2.5 -	V
Reverse Recovery Time	(I _S = -25 A, V _{GS} = 0 V, dI _S /dt = 100 A/μs)	t _{rr}	-	70	-	ns
		t _a	-	50	-	1
	α.σ, α. 1007, γρο)	t _b	-	20	-	1
Reverse Recovery Stored Charg	Q_{RR}	-	0.2	-	μС	

Indicates Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

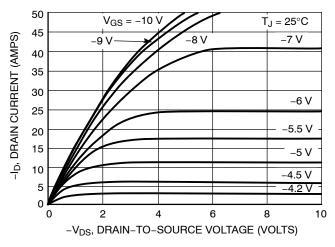
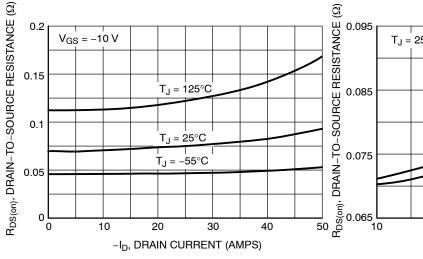



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

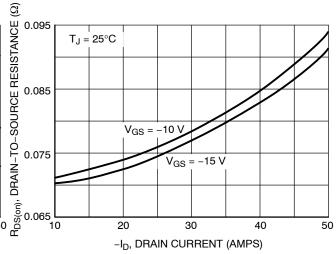


Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

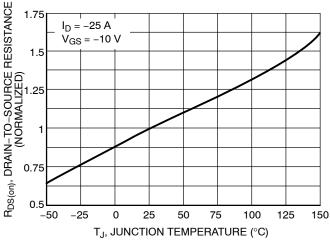


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

Figure 7. Capacitance Variation

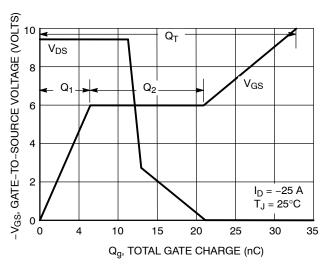


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

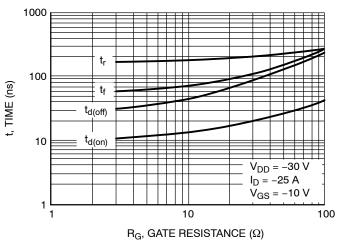


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

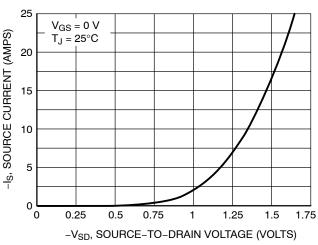


Figure 10. Diode Forward Voltage vs. Current

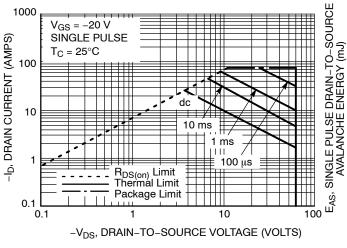


Figure 11. Maximum Rated Forward Biased Safe Operating Area

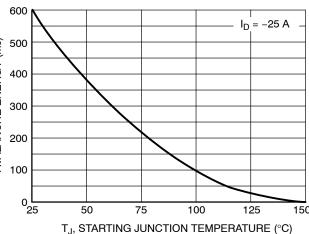
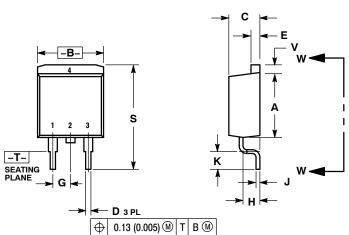
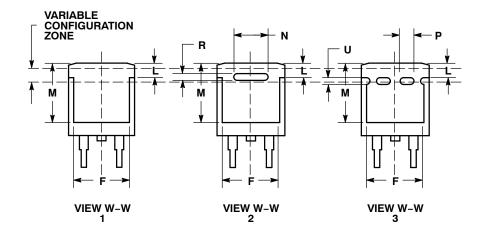
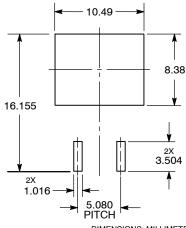



Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature


PACKAGE DIMENSIONS

D²PAK 3 CASE 418B-04 ISSUE K



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
С	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
E	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
M	0.280	0.320	7.11	8.13	
N	0.197 REF		5.00 REF		
Р	0.079 REF		2.00 REF		
R	0.039 REF		0.99 REF		
S	0.575	0.625	14.60	15.88	
V	0.045	0.055	1.14	1.40	

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and light are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative