

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-Channel Power MOSFET 60 V, 46 A, 16 m Ω

Features

- Low Gate Charge
- Fast Switching
- High Current Capability
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

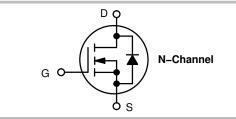
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	Symbol	Value	Unit			
Drain-to-Source Voltage			V_{DSS}	60	V	
Gate-to-Source Voltag	e – Contir	nuous	V_{GS}	±20	V	
Gate–to–Source Voltage – Non–Repetitive (t _p < 10 μs)			V_{GS}	±30	V	
Continuous Drain		$T_C = 25^{\circ}C$	I _D	46	Α	
Current (R _{θJC})	Steady	$T_C = 100^{\circ}C$		33		
Power Dissipation $(R_{\theta JC})$	State	T _C = 25°C	P_{D}	71	W	
Pulsed Drain Current	t _p =	= 10 μs	I _{DM}	203	Α	
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C	
Source Current (Body I	I _S	46	Α			
Single Pulse Drain-to-Source (L =			E _{AS}	36	mJ	
Avalanche Energy	0.1 mH)	I _{AS}	27	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

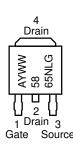
Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{\theta JC}$	2.1	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	49	

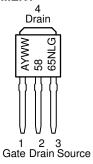

^{1.} Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	16 mΩ @ 10 V	46 A
60 V	19 mΩ @ 4.5 V	10 / 1




DPAK
CASE 369AA
(Surface Mount)
STYLE 2

IPAK CASE 369D (Straight Lead) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENT

A = Assembly Location*

Y = Year

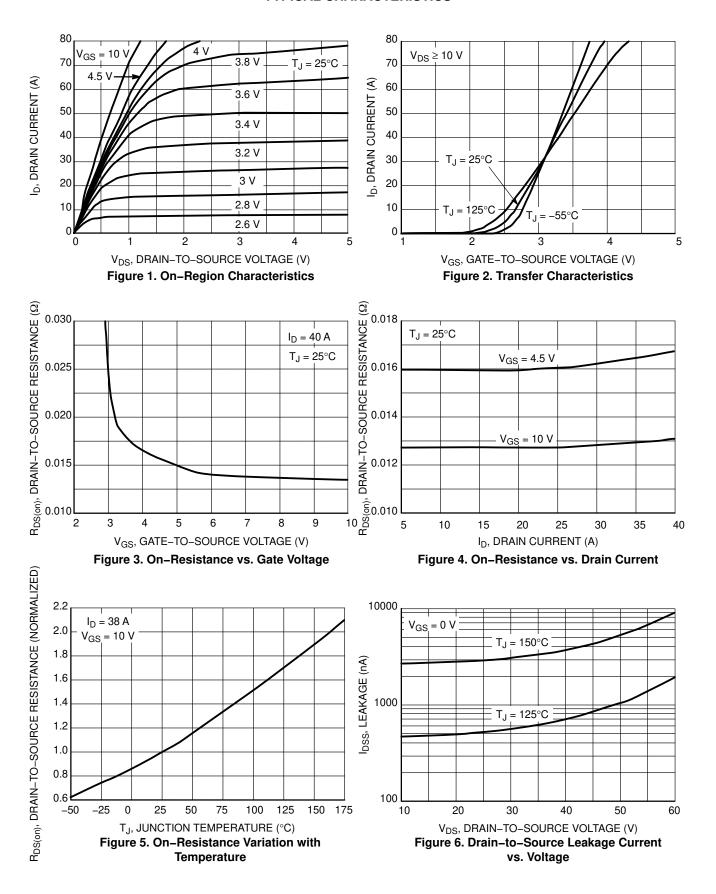
WW = Work Week 5865NL = Device Code G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				55		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	$T_J = 25^{\circ}C$ $T_J = 150^{\circ}C$			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS}	-			±100	nA
ON CHARACTERISTICS (Note 2)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D =	= 250 μΑ	1.0		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	40 20 2			5.6		mV/°C
Drain-to-Source on Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D}$	= 20 A		13	16	mΩ
Drain-to-Source on Resistance	R _{DS(on)}	$V_{GS} = 4.5 \text{ V}, I_{E}$	₀ = 20 A		16	19	mΩ
Forward Transconductance	gFS	$V_{DS} = 15 \text{ V}, I_{D}$	= 20 A		15		S
CHARGES, CAPACITANCES AND GA	TE RESISTANCI	S			-	_	-
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, } f = 1.0 \text{ MHz,} $ $V_{DS} = 25 \text{ V}$			1400		pF
Output Capacitance	C _{oss}				137		1
Reverse Transfer Capacitance	C_{rss}	. 52 =0			95		
Total Gate Charge	$Q_{G(TOT)}$				29		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_{D} = 40 \text{ A}$			1.1		
Gate-to-Source Charge	Q_{GS}	$I_D = 40$	Ā		4		
Gate-to-Drain Charge	Q_{GD}				8		
Total Gate Charge	$Q_{G(TOT)}$	$V_{GS} = 4.5 \text{ V}, V_{DS} = 48 \text{ V},$ $I_D = 40 \text{ A}$			15		nC
Gate Resistance	R_{G}				1.3		Ω
SWITCHING CHARACTERISTICS (Not	e 3)						
Turn-On Delay Time	t _{d(on)}				8.4		ns
Rise Time	t _r	$V_{GS} = 10 \text{ V}, V_{Di}$	_D = 48 V,		12.4		
Turn-Off Delay Time	t _{d(off)}	$I_D = 40 \text{ A}, R_G$	= 2.5 Ω		26		
Fall Time	t _f				4.4		
DRAIN-SOURCE DIODE CHARACTER	RISTICS						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$ $T_{J} = 125^{\circ}\text{C}$			0.95	1.2	V
					0.85		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dls/dt = 100 \text{ A/}\mu\text{s,}$ $l_{S} = 40 \text{ A}$			20		ns
Charge Time	ta				13		1
Discharge Time	tb				7		
Reverse Recovery Charge	Q_{RR}				13		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width $\leq 300~\mu$ s, Duty Cycle $\leq 2\%$.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

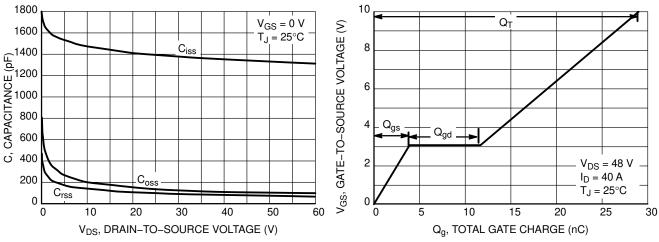


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source vs. Total Charge

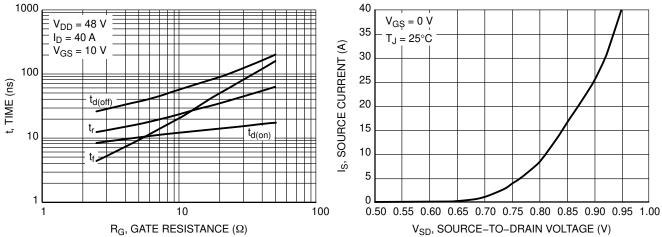


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

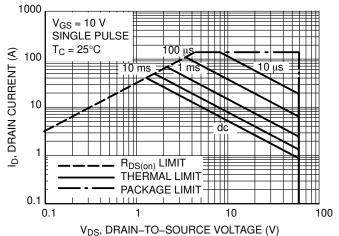


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

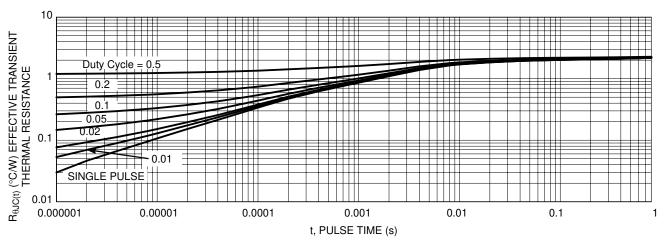
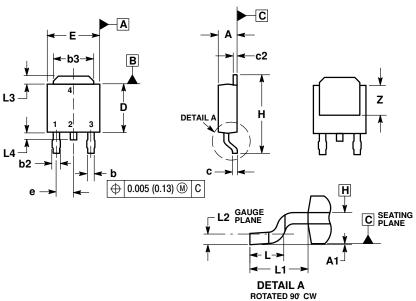
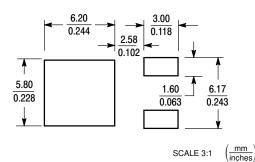


Figure 12. Thermal Response

ORDERING INFORMATION


Order Number	Package	Shipping [†]
NTD5865NL-1G	IPAK (Straight Lead) (Pb-Free)	75 Units / Rail
NTD5865NLT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA **ISSUE B**

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

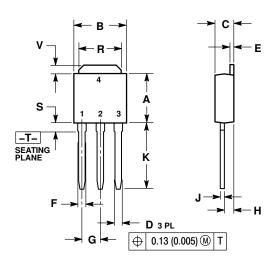
 2. CONTROLLING DIMENSION: INCHES.

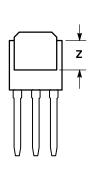
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.


	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108 REF		2.74 REF		
L2	0.020 BSC		0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE

- 4. DRAIN

PACKAGE DIMENSIONS

IPAK CASE 369D **ISSUE C**

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

STYLE 2:

PIN 1. GATE 2. DRAIN

- SOURCE DRAIN

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and or gutarities regarding the solitability or its products of any prictional purpose, not obes solitable any liability arising out of the application of the specifications can and follow provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative