

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET

72 A, 25 V, N-Channel DPAK

Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DS(on)} to Minimize Conduction Loss
- Low C_{ISS} to Minimize Driver Loss
- Low Gate Charge
- Pb-Free Packages are Available

MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

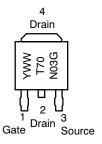
Parameter	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	25	V_{dc}
Gate-to-Source Voltage - Continuous	V _{GS}	±20	V_{dc}
Thermal Resistance – Junction-to-Case Total Power Dissipation @ T _C = 25°C Drain Current	$R_{ heta JC} P_D$	2.4 62.5	°C/W W
$ \begin{array}{l} - \mbox{ Continuous } @\ T_C = 25^{\circ}\mbox{C, Chip} \\ - \mbox{ Continuous } @\ T_C = 25^{\circ}\mbox{C, Limited by Package} \\ - \mbox{ Continuous } @\ T_A = 25^{\circ}\mbox{C, Limited by Wires} \\ - \mbox{ Single Pulse } (t_p = 10\ \mu\text{s}) \end{array} $	I _D I _D I _{DM}	72.0 62.8 32 140	A A A
Thermal Resistance – Junction-to-Ambient (Note1)	$R_{\theta JA}$	80	°C/W
Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C	P_{D}	1.87 12.0	W A
Thermal Resistance - Junction-to-Ambient (Note2)	$R_{\theta JA}$	110	°C/W
Total Power Dissipation @ T _A = 25°C Drain Current - Continuous @ T _A = 25°C	P_{D}	1.36 10.0	W A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 175	°C
Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25^{\circ}C$ ($V_{DD} = 30 \ V_{dc}, \ V_{GS} = 10 \ V_{dc}, \ I_L = 12 \ A_{pk}, \ L = 1 \ mH, \ R_G = 25 \ \Omega$)	E _{AS}	71.7	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from Case for 10 s	TL	260	°C

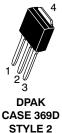
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

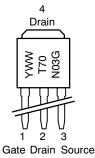
- 1. When surface mounted to an FR4 board using 0.5 sq. in. pad size.
- When surface mounted to an FR4 board using minimum recommended pad size.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
25 V	5.6 m Ω	72 A




MARKING DIAGRAMS

DPAK CASE 369AA STYLE 2

70N03 = Device Code Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ Unless otherwise specified)

C	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						<u> </u>
Drain-to-Source Breakdown (V_{GS} = 0 V_{dc} , I_D = 250 μ A, Temperature Coefficient (Pos	V _{(br)DSS}	25 -	28 20.5	- -	V _{dc} mV/°C	
Zero Gate Voltage Drain Curr (V_{DS} = 20 V_{dc} , V_{GS} = 0 V_{cc}) (V_{DS} = 20 V_{dc} , V_{GS} = 0 V_{cc})	I _{DSS}	-	- -	1.5 10	μA _{dc}	
Gate-Body Leakage Current $(V_{GS} = \pm 20 V_{dc}, V_{DS} = 0)$	/ _{dc})	I _{GSS}	-	-	±100	nA _{dc}
ON CHARACTERISTICS (No	te 3)					
Gate Threshold Voltage (Note ($V_{DS} = V_{GS}$, $I_D = 250 \mu A_{d}$). Threshold Temperature Coeff	V _{GS(th)}	1.0 -	1.5 4.0	2.0	V _{dc} mV/°C	
Static Drain-to-Source On-F ($V_{GS} = 4.5 V_{dc}$, $I_D = 20 A_c$ ($V_{GS} = 10 V_{dc}$, $I_D = 20 A_d$	(c)	R _{DS(on)}	- -	8.1 5.6	13 8.0	mΩ
Forward Transconductance ($V_{DS} = 10 V_{dc}$, $I_D = 15 A_{dc}$		9FS	ı	27	-	Mhos
DYNAMIC CHARACTERISTI	cs					
Input Capacitance		C _{ISS}	-	1333	-	pF
Output Capacitance	$(V_{DS} = 20 V_{dc}, V_{GS} = 0 V,$ f = 1 MHz)	C _{OSS}	-	600	-	
Transfer Capacitance	,	C _{RSS}	1	218	-	
SWITCHING CHARACTERIS	STICS (Note 4)					
Turn-On Delay Time		t _{d(on)}	-	6.9	-	ns
Rise Time	(V _{GS} = 10 V _{dc} , V _{DD} = 10 V _{dc} ,	t _r	-	1.3	-	
Turn-Off Delay Time	$I_D = 36 A_{dc}, R_G = 3 \Omega$	t _{d(off)}	-	18.4	-	
Fall Time		t _f	-	5.5	-	
Gate Charge		Q_{T}	-	13.2	-	nC
	$(V_{GS} = 5 V_{dc}, I_D = 36 A_{dc}, V_{DS} = 10 V_{dc})$ (Note 3)	Q_{GS}	-	3.3	-	
	go do ()	Q _{DS}	ı	6.5	-	
SOURCE-DRAIN DIODE CH	ARACTERISTICS					
Forward On-Voltage	$(I_S = 20 \text{ A}_{dc}, \text{ V}_{GS} = 0 \text{ V}_{dc}) \text{ (Note 3)}$ $(I_S = 20 \text{ A}_{dc}, \text{ V}_{GS} = 0 \text{ V}_{dc}, \text{ T}_J = 125^{\circ}\text{C})$	V _{SD}	- -	0.86 0.73	1.2 -	V _{dc}
Reverse Recovery Time		t _{rr}	-	27.9	-	ns
	(4. 22.4.)/	t _a	-	14.8	-	1
	$(I_S = 36 A_{dc}, V_{GS} = 0 V_{dc}, dI_S/dt = 100 A/\mu s)$ (Note 3)		-	13.1	-	7
Reverse Recovery Stored Charge		Q _{RR}	1	19	-	nC

Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES ($T_J = 25^{\circ}C$ unless otherwise noted)

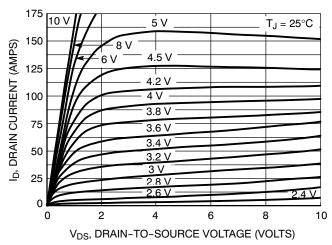
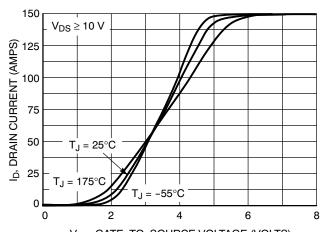



Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS) Figure 2. Transfer Characteristics

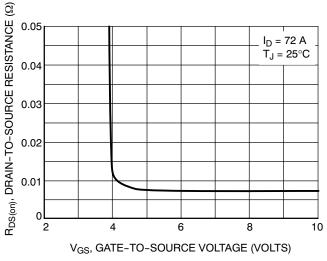


Figure 3. On-Resistance versus Gate-to-Source Voltage

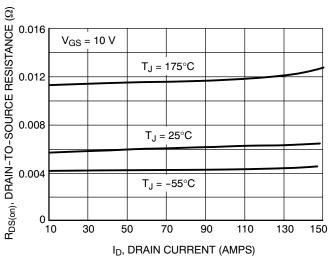


Figure 4. On-Resistance versus Drain Current and Gate Voltage

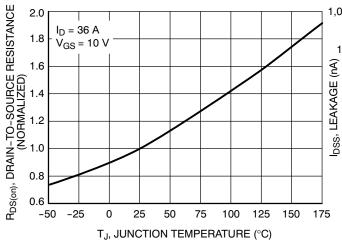


Figure 5. On-Resistance Variation with Temperature

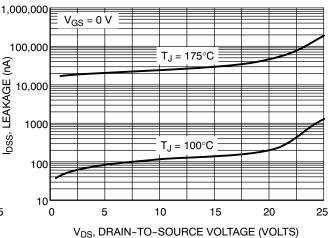
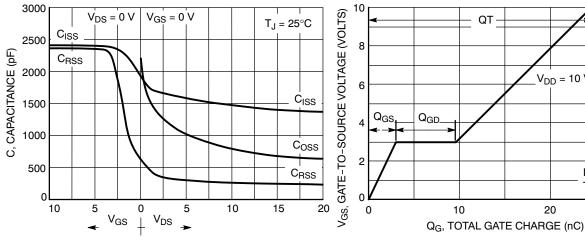



Figure 6. Drain-to-Source Leakage Current versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

V_{DD} = 10 V

 $I_{D} = 36 A$ $T_J = 25^{\circ}C$

30

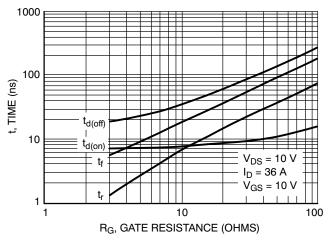


Figure 9. Resistive Switching Time Variation versus Gate Resistance

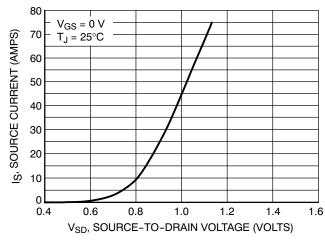


Figure 10. Diode Forward Voltage versus Current

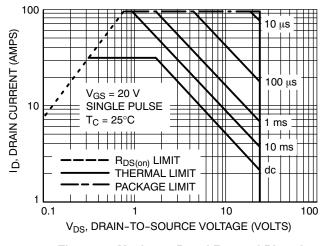


Figure 11. Maximum Rated Forward Biased Safe Operating Area

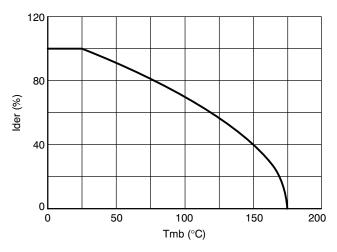


Figure 12. Normalized Continuous Drain Current as a function of Mounting Base Temperature

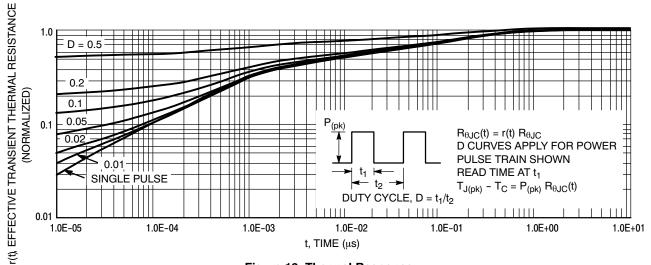
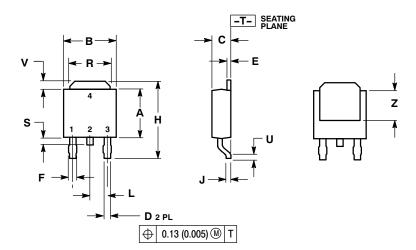


Figure 13. Thermal Response

ORDERING INFORMATION

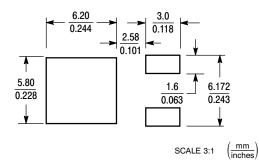

Order Number	Package	Shipping †	
NTD70N03R	DPAK-3	75 Units / Rail	
NTD70N03RG	DPAK-3 (Pb-Free)	75 Units / Rail	
NTD70N03RT4	DPAK-3	2500 / Tape & Reel	
NTD70N03RT4G	DPAK-3 (Pb-Free)	2500 / Tape & Reel	
NTD70N03R-1	DPAK-3 Straight Lead	75 Units / Rail	
NTD70N03R-1G	DPAK-3 Straight Lead (Pb-Free)	75 Units / Rail	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK

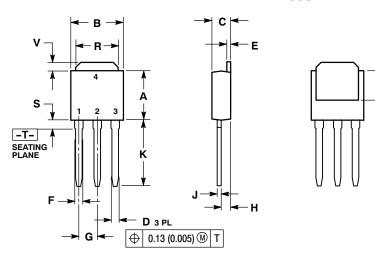
CASE 369AA-01 **ISSUE A**



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.025	0.035	0.63	0.89	
E	0.018	0.024	0.46	0.61	
F	0.030	0.045	0.77	1.14	
Н	0.386	0.410	9.80	10.40	
J	0.018	0.023	0.46	0.58	
L	0.090 BSC		2.29	BSC	
R	0.180	0.215	4.57	5.45	
S	0.024	0.040	0.60	1.01	
U	0.020		0.51		
٧	0.035	0.050	0.89	1.27	
Z	0.155		3 93		

- STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

DPAK CASE 369D-01 ISSUE B

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
E	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	0.090 BSC		2.29 BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE

- 2 DRAIN
- SOURCE DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered radiations of semiconduction Components industries, LC (SCILLC) and see the registered radiations of semiconductor components industries, the products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative