

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







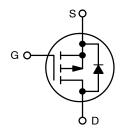
# Power MOSFET -5.2 A, -30 V

#### P-Channel SOT-223

#### **Features**

- Ultra Low R<sub>DS(on)</sub>
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Miniature SOT-223 Surface Mount Package
- Avalanche Energy Specified
- AEC-Q101 Qualified and PPAP Capable NVF5P03T3G
- These Devices are Pb-Free and are RoHS Compliant

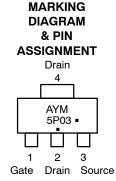
#### **Applications**


- DC-DC Converters
- Power Management
- Motor Controls
- Inductive Loads
- Replaces MMFT5P03HD



#### ON Semiconductor®

http://onsemi.com


## -5.2 AMPERES, -30 VOLTS $R_{DS(on)} = 100 \ m\Omega$



P-Channel MOSFET



SOT-223 CASE 318E STYLE 3



A = Assembly Location

′ = Year

M = Date Code

5P03 = Specific Device Code

= Pb-Free Package

(Note: Microdot may be in either location)

#### **ORDERING INFORMATION**

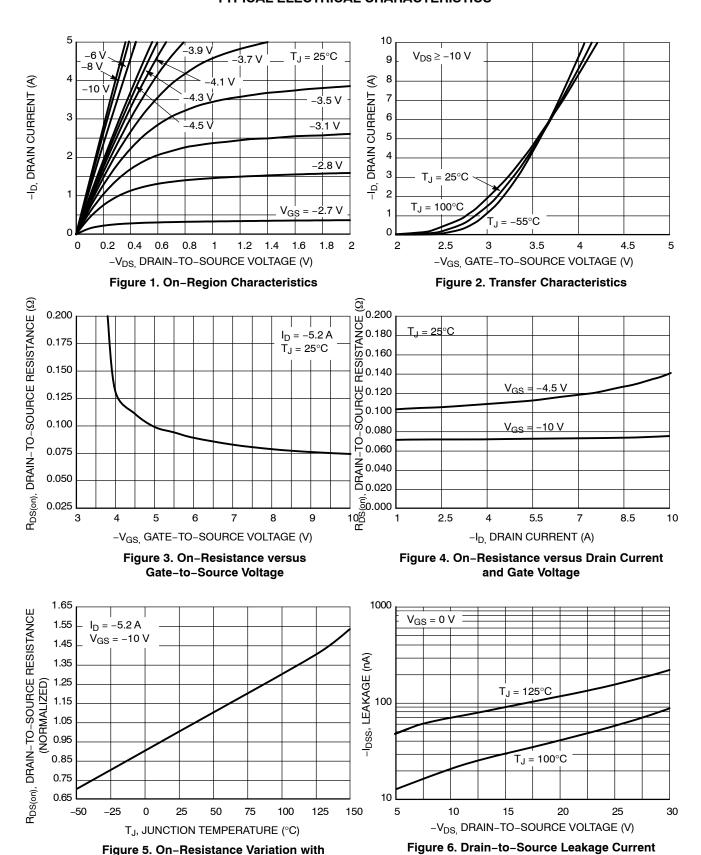
| Device     | Package              | Shipping <sup>†</sup> |
|------------|----------------------|-----------------------|
| NTF5P03T3G | SOT-223<br>(Pb-Free) | 4000 / Tape &<br>Reel |
| NVF5P03T3G | SOT-223<br>(Pb-Free) | 4000 / Tape &<br>Reel |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

#### **MAXIMUM RATINGS** ( $T_J = 25^{\circ}\text{C}$ unless otherwise noted) **Negative sign for P-Channel devices omitted for clarity**

| Rating                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                         | Max                                       | Unit                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|
| Drain-to-Source Voltage                                                                                                                                                   |                                                                                                                                                                                                                                     |                                                                         | -30                                       | V                                     |
| Drain-to-Gate Voltage (R <sub>GS</sub> = 1.0 M $\Omega$ )                                                                                                                 |                                                                                                                                                                                                                                     |                                                                         | -30                                       | V                                     |
| Gate-to-Source Voltage - Continuous                                                                                                                                       |                                                                                                                                                                                                                                     |                                                                         | ± 20                                      | V                                     |
| 1 sq in<br>FR-4 or G-10 PCB<br>10 seconds                                                                                                                                 | Thermal Resistance – Junction to Ambient Total Power Dissipation @ $T_A$ = 25°C Linear Derating Factor Drain Current – Continuous @ $T_A$ = 25°C Continuous @ $T_A$ = 70°C Pulsed Drain Current (Note 1)                            | R <sub>THJA</sub><br>PD<br>I <sub>D</sub><br>I <sub>D</sub>             | 40<br>3.13<br>25<br>-5.2<br>-4.1<br>-26   | °C/W<br>Watts<br>mW/°C<br>A<br>A      |
| Minimum FR-4 or G-10 PCB 10 seconds                                                                                                                                       | Thermal Resistance – Junction to Ambient Total Power Dissipation @ T <sub>A</sub> = 25°C Linear Derating Factor Drain Current – Continuous @ T <sub>A</sub> = 25°C Continuous @ T <sub>A</sub> = 70°C Pulsed Drain Current (Note 1) | R <sub>THJA</sub><br>P <sub>D</sub><br>I <sub>D</sub><br>I <sub>D</sub> | 80<br>1.56<br>12.5<br>-3.7<br>-2.9<br>-19 | °C/W<br>Watts<br>mW/°C<br>A<br>A<br>A |
| Operating and Storage                                                                                                                                                     | Operating and Storage Temperature Range T <sub>J</sub> , T <sub>stg</sub>                                                                                                                                                           |                                                                         | – 55 to 150                               | °C                                    |
| Single Pulse Drain–to–Source Avalanche Energy – Starting $T_J$ = 25°C ( $V_{DD}$ = -30 Vdc, $V_{GS}$ = -10 Vdc, Peak $I_L$ = -12 Apk, $L$ = 3.5 mH, $R_G$ = 25 $\Omega$ ) |                                                                                                                                                                                                                                     |                                                                         | 250                                       | mJ                                    |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


<sup>1.</sup> Repetitive rating; pulse width limited by maximum junction temperature.

#### ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = 25°C unless otherwise noted)

| Charac                                                                                                                                         | Symbol                                                                                          | Min                 | Тур          | Max           | Unit         |     |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|--------------|---------------|--------------|-----|
| OFF CHARACTERISTICS                                                                                                                            |                                                                                                 | · L                 | I            | l             |              | 1   |
| Drain-to-Source Breakdown Voltage                                                                                                              | V <sub>(BR)DSS</sub>                                                                            |                     |              |               | Vdc          |     |
| $(V_{GS} = 0 \text{ Vdc}, I_D = -250 \mu\text{Adc})$<br>Temperature Coefficient (Positive)                                                     |                                                                                                 | -30<br>-            | -<br>-28     | -             | mV/°C        |     |
| Zero Gate Voltage Drain Current $(V_{DS} = -24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$ $(V_{DS} = -24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J)$ | I <sub>DSS</sub>                                                                                | -<br>-              | -<br>-       | -1.0<br>-25   | μAdc         |     |
| Gate-Body Leakage Current<br>(V <sub>GS</sub> = ± 20 Vdc, V <sub>DS</sub> = 0 Vdc)                                                             | I <sub>GSS</sub>                                                                                | -                   | -            | ± 100         | nAdc         |     |
| ON CHARACTERISTICS (Note 2)                                                                                                                    |                                                                                                 | I                   |              |               |              | I   |
| Gate Threshold Voltage (Cpk $\geq$ 2.0) (I $(V_{DS} = V_{GS}, I_D = -250 \mu\text{Adc})$<br>Threshold Temperature Coefficient (N               | V <sub>GS(th)</sub>                                                                             | -1.0<br>-           | -1.75<br>3.5 | -3.0<br>-     | Vdc<br>mV/°C |     |
| Static Drain-to-Source On-Resistant ( $V_{GS} = -10$ Vdc, $I_D = -5.2$ Adc) ( $V_{GS} = -4.5$ Vdc, $I_D = -2.6$ Adc)                           | R <sub>DS(on)</sub>                                                                             | _                   | 76<br>107    | 100<br>150    | mΩ           |     |
| Forward Transconductance (Note 2) (V <sub>DS</sub> = -15 Vdc, I <sub>D</sub> = -2.0 Adc)                                                       | 9fs                                                                                             | 2.0                 | 3.9          | -             | Mhos         |     |
| DYNAMIC CHARACTERISTICS                                                                                                                        |                                                                                                 | <del>'</del>        |              |               |              |     |
| Input Capacitance                                                                                                                              | $(V_{DS} = -25 \text{ Vdc}, V_{GS} = 0 \text{ V},$                                              | C <sub>iss</sub>    | _            | 500           | 950          | pF  |
| Output Capacitance                                                                                                                             | f = 1.0 MHz)                                                                                    | C <sub>oss</sub>    | _            | 153           | 440          |     |
| Transfer Capacitance                                                                                                                           |                                                                                                 | C <sub>rss</sub>    | -            | 58            | 140          |     |
| SWITCHING CHARACTERISTICS                                                                                                                      | Note 3)                                                                                         | 1                   |              | •             |              |     |
| Turn-On Delay Time                                                                                                                             | $(V_{DD} = -15 \text{ Vdc}, I_D = -4.0 \text{ Adc},$                                            | t <sub>d(on)</sub>  | _            | 10            | 24           | ns  |
| Rise Time                                                                                                                                      | $V_{GS} = -10 \text{ Vdc},$<br>$R_G = 6.0 \Omega) \text{ (Note 2)}$                             | t <sub>r</sub>      | -            | 33            | 48           | =   |
| Turn-Off Delay Time                                                                                                                            | - , , ,                                                                                         | t <sub>d(off)</sub> | -            | 38            | 94           |     |
| Fall Time                                                                                                                                      |                                                                                                 | t <sub>f</sub>      | -            | 20            | 92           |     |
| Turn-On Delay Time                                                                                                                             | $(V_{DD} = -15 \text{ Vdc}, I_D = -2.0 \text{ Adc},$                                            | t <sub>d(on)</sub>  | _            | 16            | 38           | ns  |
| Rise Time                                                                                                                                      | $V_{GS} = -10 \text{ Vdc},$ $R_G = 6.0 \Omega) \text{ (Note 2)}$                                | t <sub>r</sub>      | _            | 45            | 110          |     |
| Turn-Off Delay Time                                                                                                                            |                                                                                                 | t <sub>d(off)</sub> | -            | 23            | 60           |     |
| Fall Time                                                                                                                                      |                                                                                                 | t <sub>f</sub>      | _            | 24            | 80           |     |
| Gate Charge                                                                                                                                    | $(V_{DS} = -24 \text{ Vdc}, I_D = -4.0 \text{ Adc}, V_{GS} = -10 \text{ Vdc}) \text{ (Note 2)}$ | $Q_{T}$             | _            | 15            | 38           | nC  |
|                                                                                                                                                |                                                                                                 | Q <sub>1</sub>      | _            | 1.6           | _            | _   |
|                                                                                                                                                |                                                                                                 | $Q_2$               | _            | 3.5           | _            |     |
|                                                                                                                                                |                                                                                                 | Q3                  | _            | 2.6           | -            |     |
| SOURCE-DRAIN DIODE CHARA                                                                                                                       | CTERISTICS                                                                                      |                     |              |               |              |     |
| Forward On-Voltage                                                                                                                             |                                                                                                 | V <sub>SD</sub>     | _<br>_       | -1.1<br>-0.89 | -1.5<br>-    | Vdc |
| Reverse Recovery Time                                                                                                                          | $(I_S = -4.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$                                              | t <sub>rr</sub>     | _            | 34            |              | ns  |
|                                                                                                                                                | dl <sub>S</sub> /dt = 100 A/μs) (Note 2)                                                        | ta                  | _            | 20            | _            |     |
|                                                                                                                                                |                                                                                                 | t <sub>b</sub>      | _            | 14            | _            |     |
| Reverse Recovery Stored Charge                                                                                                                 | Q <sub>RR</sub>                                                                                 | -                   | 0.036        | -             | μC           |     |

2. Pulse Test: Pulse Width  $\leq$  300  $\mu$ s, Duty Cycle  $\leq$  2.0%.
3. Switching characteristics are independent of operating junction temperatures.
4. Reflects typical values.  $Cpk = \left | \frac{\text{Max limit} - Typ}{3 \times \text{SIGMA}} \right |$ 

#### TYPICAL ELECTRICAL CHARACTERISTICS



**Temperature** 

versus Voltage

#### TYPICAL ELECTRICAL CHARACTERISTICS

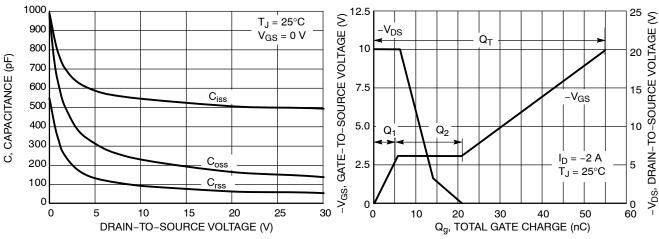



Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

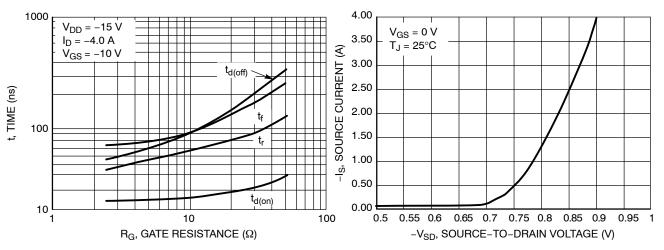



Figure 9. Resistive Switching Time Variation versus Gate Resistance

250

ON THE BOARD STATE OF THE PROPERTY OF THE

Figure 10. Diode Forward Voltage versus Current

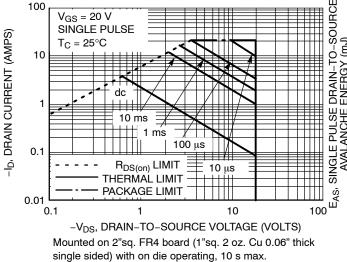



Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

#### TYPICAL ELECTRICAL CHARACTERISTICS

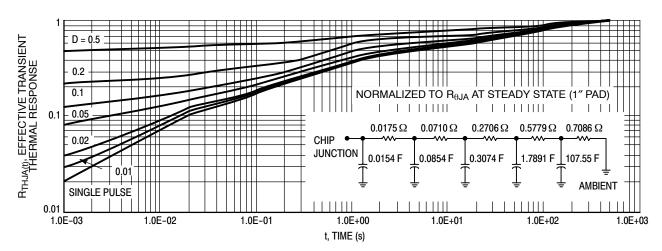
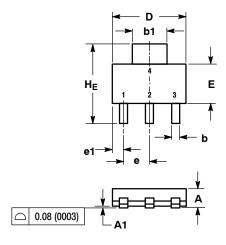
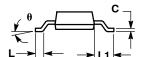





Figure 13. FET Thermal Response

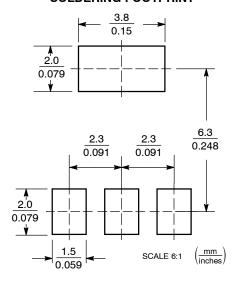
#### PACKAGE DIMENSIONS

#### SOT-223 (TO-261) CASE 318E-04 ISSUE N





DIMENSIONING AND TOLERANCING PER ASME Y14.5M,


| 1. DIMENSIONING AND TOLERANCING FER ASME 114.5M, |             |      |      |        |       |       |  |
|--------------------------------------------------|-------------|------|------|--------|-------|-------|--|
| 1994.                                            |             |      |      |        |       |       |  |
| 2 CONTROLLING DIMENSION: INCH                    |             |      |      |        |       |       |  |
|                                                  | MILLIMETERS |      |      | INCHES |       |       |  |
| DIM                                              | MIN         | NOM  | MAX  | MIN    | MOM   | MAX   |  |
| Α                                                | 1.50        | 1.63 | 1.75 | 0.060  | 0.064 | 0.068 |  |
| A1                                               | 0.02        | 0.06 | 0.10 | 0.001  | 0.002 | 0.004 |  |
| b                                                | 0.60        | 0.75 | 0.89 | 0.024  | 0.030 | 0.035 |  |
| b1                                               | 2.90        | 3.06 | 3.20 | 0.115  | 0.121 | 0.126 |  |
| С                                                | 0.24        | 0.29 | 0.35 | 0.009  | 0.012 | 0.014 |  |
| D                                                | 6.30        | 6.50 | 6.70 | 0.249  | 0.256 | 0.263 |  |
| E                                                | 3.30        | 3.50 | 3.70 | 0.130  | 0.138 | 0.145 |  |
| е                                                | 2.20        | 2.30 | 2.40 | 0.087  | 0.091 | 0.094 |  |
| e1                                               | 0.85        | 0.94 | 1.05 | 0.033  | 0.037 | 0.041 |  |
| L                                                | 0.20        |      |      | 0.008  |       |       |  |
| L1                                               | 1.50        | 1.75 | 2.00 | 0.060  | 0.069 | 0.078 |  |
| HE                                               | 6.70        | 7.00 | 7.30 | 0.264  | 0.276 | 0.287 |  |
| θ                                                | 0°          | -    | 10°  | 0°     | _     | 10°   |  |

STYLE 3: PIN 1. GATE

DRAIN SOURCE

4 DRAIN

#### SOLDERING FOOTPRINT



ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative