

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET

-20 V, -2.5 A, P-Channel, TSOP-6 Dual

Features

- Reduced Gate Charge for Fast Switching
- -2.5 V Gate Rating
- Leading Edge Trench Technology for Low On Resistance
- Independent Devices to Provide Design Flexibility
- This is a Pb-Free Device

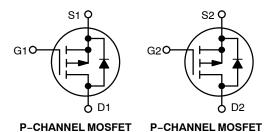
Applications

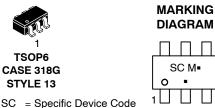
- Li-Ion Battery Charging
- Load Switch / Power Switching
- DC to DC Conversion
- Portable Devices like PDA's, Cellular Phones, and Hard Drives

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parame	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	-20	V		
Gate-to-Source Voltage			V_{GS}	±12	V
Continuous Drain	Steady	T _A = 25°C	I_{D}	-2.2	Α
Current (Note 1)	State	T _A = 85°C		-1.6	
	t ≤ 5 s	T _A = 25°C		-2.5	
Power Dissipation (Note 1)	Steady State	T	P _D	1.0	W
(11010-1)	t≤5s	T _A = 25°C		1.3	
0 " 0 "					
Continuous Drain	Steady State	$T_A = 25^{\circ}C$	I _D	-1.6	Α
Current (Note 2)	State	$T_A = 85^{\circ}C$		-1.2	
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.56	W
Pulsed Drain Current	I_{DM}	-7.5	Α		
Operating Junction and S	T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Di	I _S	-0.8	Α		
Lead Temperature for Sc (1/8" from case for 10 s)	TL	260	°C		

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

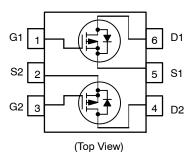

- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- 2. Surface Mounted on FR4 Board using the minimum recommended pad size (Cu area = 30 mm² [2 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
-20 V	145 mΩ @ -4.5 V	-2.2 A
	200 mΩ @ -2.5 V	-1.6 A



= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTION

ORDERING INFORMATION

Device	Package	Shipping [†]
NTGD3133PT1G	TSOP6 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	115	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)	$R_{ heta JA}$	95	
Junction-to-Ambient - Steady State Min Pad (Note 4)	R_{\thetaJA}	225	

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (Cu area = 30 mm² [2 oz] including traces).

$\textbf{MOSFET ELECTRICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted})$

Parameter	Symbol	Test Conditions			Тур	Max	Unit
OFF CHARACTERISTICS	•					1	1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V	I _D = -250 μA	-20	-	-	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	•		-	14.2	_	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V 0VV 10V	T _J = 25°C	-	-	-1.0	μΑ
		$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$	T _J = 85°C	-	-	-10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} =$	= ±12 V	-	-	±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.6	-0.95	-1.4	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D =$	-2.2 A	-	90	145	mΩ
		V _{GS} = -2.5 V, I _D =	-1.6 A	-	140	200	
Forward Transconductance	9 _{FS}	$V_{DS} = -5.0 \text{ V}, I_{D} = -2.2 \text{ A}$			4.5	-	S
CHARGES, CAPACITANCES & GATE RI	ESISTANCE					-	
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V}, V_{DS} = -10 \text{ V}, f = 1.0 \text{ MHz}$			400	-	pF
Output Capacitance	C _{OSS}				75	-	
Reverse Transfer Capacitance	C _{RSS}				40	-	
Total Gate Charge	Q _{G(TOT)}			-	3.8	5.5	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -2.2 \text{ A}$		-	0.5	-	
Gate-to-Source Charge	Q_{GS}			-	0.9	-	1
Gate-to-Drain Charge	Q_{GD}			-	1.0	-	
SWITCHING CHARACTERISTICS (Note	6)						•
Turn-On Delay Time	t _{d(ON)}			_	6.7	_	ns
Rise Time	t _r	V _{GS} = -4.5 V, V _{DD}	= -10 V.	_	12.7	-	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -1.0 \text{ A}, R_G = 6.0 \Omega$		_	13.2	-	
Fall Time	t _f				11	-	
DRAIN-SOURCE DIODE CHARACTERIS	STICS				•	•	
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, T _J = 25°C	$I_S = -0.8 \text{ A}$	_	-0.8	-1.2	V
Reverse Recovery Time	t _{RR}		1	-	12	-	ns
Charge Time	ta	$V_{GS} = 0 \text{ V},$ $dI_{SD} / dt = 100 \text{ A/}\mu\text{s}, I_{S} = -0.8 \text{ A}$		_	8.0	-	
Discharge Time	t _b			-	4.0	-	
Reverse Recovery Charge	Q _{RR}	1			4.0	-	nC

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CHARACTERISTICS

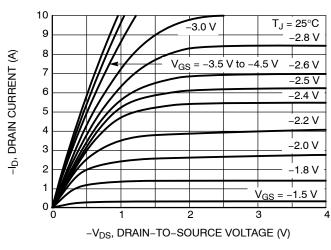
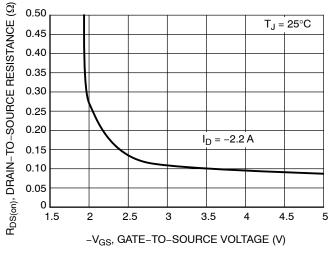



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

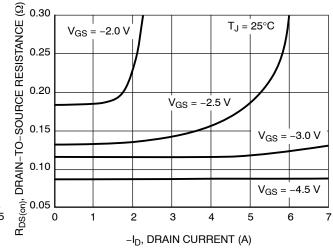
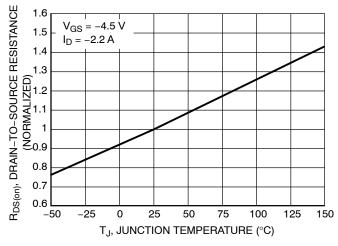



Figure 3. On-Resistance versus Gate-to-Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

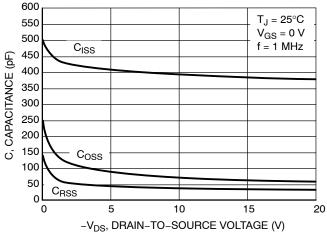


Figure 5. On–Resistance Variation with Temperature

Figure 6. Capacitance Variation

TYPICAL PERFORMANCE CHARACTERISTICS

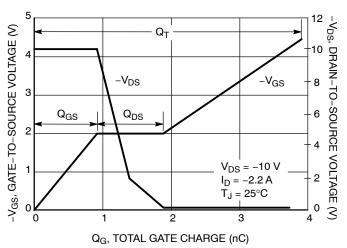


Figure 7. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

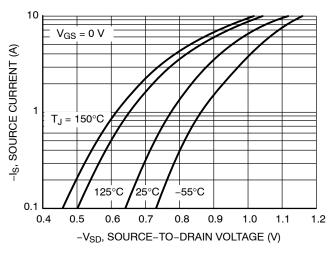


Figure 9. Diode Forward Voltage versus Current

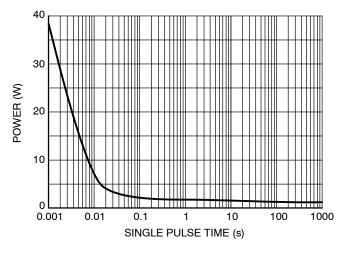
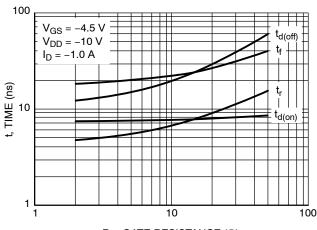



Figure 11. Single Pulse Maximum Power Dissipation

 R_G , GATE RESISTANCE (Ω)

Figure 8. Resistive Switching Time Variation versus Gate Resistance

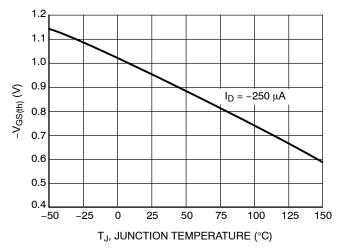


Figure 10. Threshold Voltage

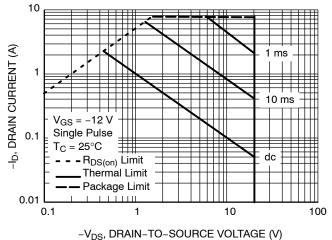


Figure 12. Maximum Rated Forward Biased Safe Operating Area

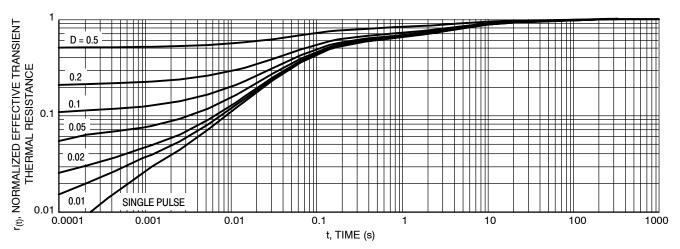
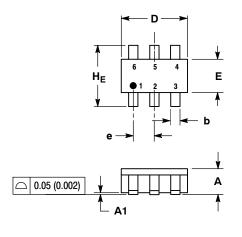
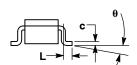




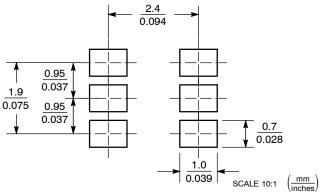
Figure 13. Thermal Response

PACKAGE DIMENSIONS

TSOP-6 CASE 318G-02 **ISSUE S**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF PASE MATERIAL. BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE
- MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	М	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.90	1.00	1.10	0.035	0.039	0.043	
A1	0.01	0.06	0.10	0.001	0.002	0.004	
b	0.25	0.38	0.50	0.010	0.014	0.020	
С	0.10	0.18	0.26	0.004	0.007	0.010	
D	2.90	3.00	3.10	0.114	0.118	0.122	
E	1.30	1.50	1.70	0.051	0.059	0.067	
е	0.85	0.95	1.05	0.034	0.037	0.041	
L	0.20	0.40	0.60	0.008	0.016	0.024	
HE	2.50	2.75	3.00	0.099	0.108	0.118	
θ	0°	-	10°	0°	-	10°	


STYLE 13:

- PIN 1. GATE 1 2. SOURCE 2

 - 3. GATE 2 4. DRAIN 2
 - 5 SOURCE 1

 - DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative