

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET Dual P-Channel ChipFET™

3.0 Amps, 8 Volts

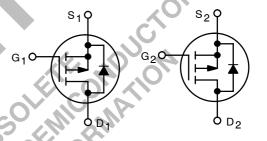
Features

- Low R_{DS(on)} for Higher Efficiency
- Logic Level Gate Drive
- Miniature ChipFET Surface Mount Package

Applications

• Power Management in Portable and Battery-Powered Products; i.e., Cellular and Cordless Telephones and PCMCIA Cards

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)


Rating	Symbol	5 secs	Steady State	Unit		
Drain-Source Voltage	V _{DS}	-8	3.0	V		
Gate-Source Voltage	V _{GS}	±ŧ	3.0	V		
Continuous Drain Current $(T_J = 150^{\circ}C)$ (Note 1) $T_A = 25^{\circ}C$ $T_A = 85^{\circ}C$	I _D	±4.1 ±2.9	±3.0 ±2.2	A		
Pulsed Drain Current	I _{DM}	±	10	A		
Continuous Source Current (Diode Conduction) (Note 1)	Is	-1.8	-0.9	C _A		
Maximum Power Dissipation (Note 1) T _A = 25°C T _A = 85°C	P _D	2.1 1.1	1.1 0.6	W		
Operating Junction and Storage Temperature Range	T _J , T _{stg}	-55 to	+150	°C		
Surface Mounted on 1" x 1" FR4 Board.						

ON Semiconductor®

http://onsemi.com

DUAL P-CHANNEL 3.0 AMPS, 8 VOLTS $R_{DS(on)} = 90 \text{ m}\Omega$

Channel MOSFET

P-Channel MOSFET

ChipFET CASE 1206A STYLE 2

MARKING PIN CONNECTIONS DIAGRAM S₁ D_1 2 G₁ 2 [D_2 3 S2 3 6 D_2 4 G_2 5

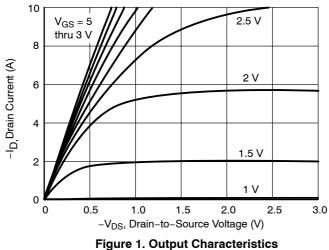
A9 = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
NTHD5905T1	ChipFET	3000/Tape & Reel

1

THERMAL CHARACTERISTICS


Characteristic	Symbol	Тур	Max	Unit
$\label{eq:maximum Junction-to-Ambient (Note 2)} $t \leq 5 sec $Steady State $$$	R _{thJA}	50 90	60 110	°C/W
Maximum Junction-to-Foot (Drain) Steady State	R _{thJF}	30	40	°C/W

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
Static						
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-0.45	-	-	V
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 8.0 \text{ V}$	_	_	± 100	nA
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -6.4 \text{ V}, V_{GS} = 0 \text{ V}$	-	-	-1.0	μΑ
		$V_{DS} = -6.4 \text{ V}, V_{GS} = 0 \text{ V},$ $T_{J} = 85^{\circ}\text{C}$	-	-	-5.0	
On-State Drain Current (Note 3)	I _{D(on)}	$V_{DS} \le -5.0 \text{ V}, V_{GS} = -4.5 \text{ V}$	-10	- , (-	Α
Drain-Source On-State Resistance (Note 3)	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -3.0 \text{ A}$	-	0.075	0.090	Ω
		$V_{GS} = -2.5 \text{ V}, I_D = -2.5 \text{ A}$	-	0.110	0.130	
		$V_{GS} = -1.8 \text{ V}, I_D = -1.0 \text{ A}$	-1	0.150	0.180	
Forward Transconductance (Note 3)	9 _{fs}	$V_{DS} = -5.0 \text{ V}, I_{D} = -3.0 \text{ A}$.O,	7.0	-	S
Diode Forward Voltage (Note 3)	V _{SD}	$I_S = -0.9 \text{ A}, V_{GS} = 0 \text{ V}$	- /	-0.8	-1.2	٧
ynamic (Note 4)		02 01	Olla	*		•
Total Gate Charge	Q_g	0, 9,) -	5.5	9.0	nC
Gate-Source Charge	Q_{gs}	$V_{DS} = -4.0 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -3.0 \text{ A}$	_	0.5	-	
Gate-Drain Charge	Q _{gd}		-	1.5	-	
Turn-On Delay Time	t _{d(on)}	(0,11,0),	-	10	15	ns
Rise Time	t _r	$V_{DD} = -4.0 \text{ V}, R_L = 4 \Omega$ $I_D \cong -1.0 \text{ A}, V_{GEN} = -4.5 \text{ V},$	_	45	70	
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1.0 \text{ A}, V_{GEN} = -4.5 \text{ V},$ $R_G = 6 \Omega$	_	30	45	
Fall Time	St _f		_	10	15	
Source-Drain Reverse Recovery Time	,t _m	I _F = -0.9 A, di/dt = 100 A/μs	_	30	60	

- Surface Mounted on 1" x 1" FR4 Board.
 Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Guaranteed by design, not subject to production testing.

TYPICAL ELECTRICAL CHARACTERISTICS

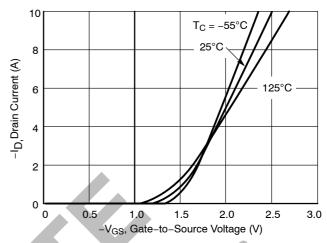


Figure 2. Transfer Characteristics

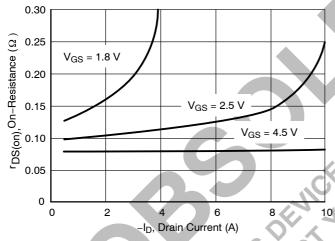


Figure 3. On-Resistance vs. Drain Current

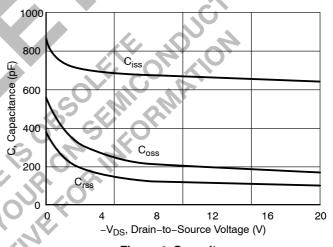


Figure 4. Capacitance

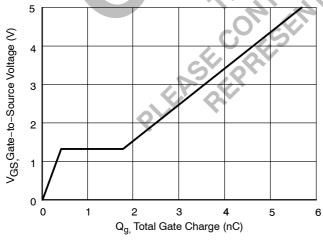


Figure 5. Gate Charge

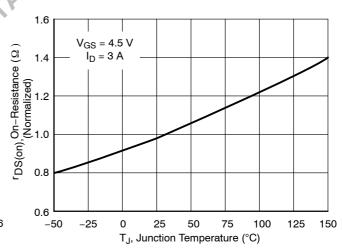


Figure 6. On-Resistance vs. **Junction Temperature**

TYPICAL ELECTRICAL CHARACTERISTICS

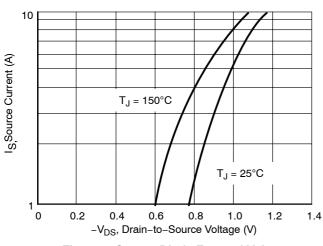


Figure 7. Source Diode Forward Voltage

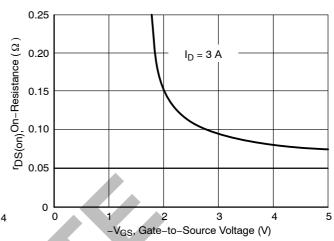
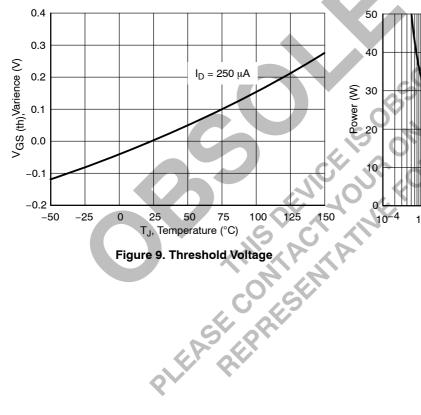



Figure 8. On-Resistance vs. Gate-to-Source Voltage

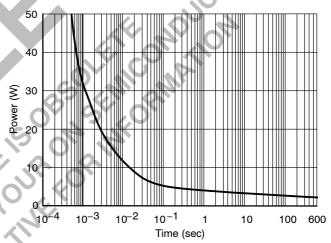


Figure 10. Single Pulse Power

TYPICAL ELECTRICAL CHARACTERISTICS

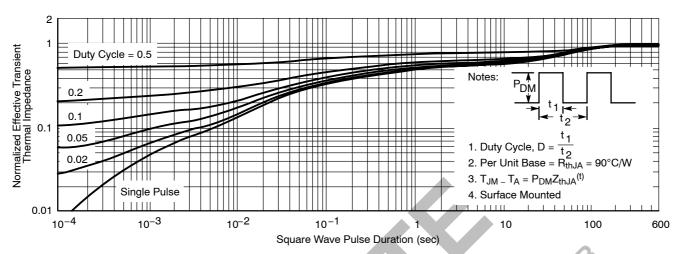
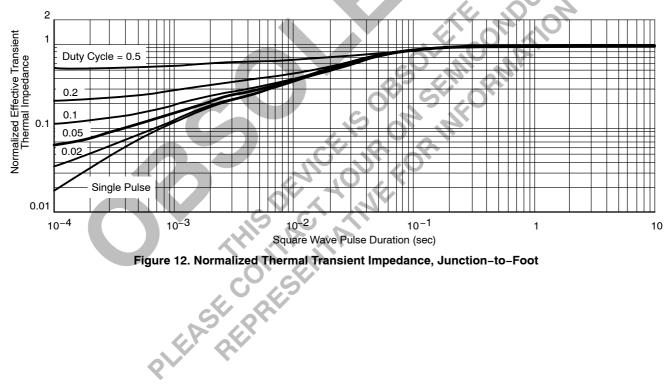
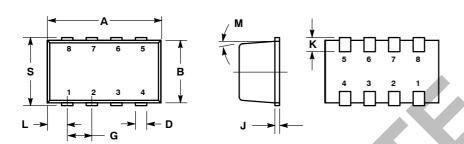
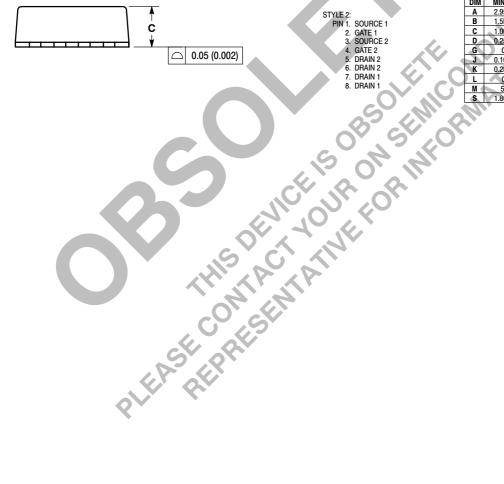



Figure 11. Normalized Thermal Transient Impedance, Junction-to-Ambient




Notes

PACKAGE DIMENSIONS

ChipFET CASE 1206A-03 ISSUE D

STYLE 2: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
 3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM
- PER SIDE.

 4. LEADFRAME TO MOLDED BODY OFFSET IN
 HORIZONTAL AND VERTICAL SHALL NOT EXCEED 0.08 MM
- DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE RURRS
- NO MOLD FLASH ALLOWED ON THE TOP AND
- BOTTOM LEAD SURFACE. 1206A-01 AND 1206A-02 OBSOLETE. NEW STANDARD IS 1206A-03.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	2.95	3.10	0.116	0.122	
В	1.55	1.70	0.061	0.067	
С	1.00	1.10	0.039	0.043	
D	0.25	0.35	0.010	0.014	
G	0.65 BSC		0.025 BSC		
J	0.10	0.20	0.004	0.008	
K	0.28	0.42	0.011	0.017	
L	0.55 BSC		0.022 BSC		
M (5°	NOM	5 ° NOM		
S	1.80	2.00	0.072	0.080	

ON Semiconductor is a trademark and is a registered trademark of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.