

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Small Signal MOSFET

30 V, 250 mA, Dual N-Channel, SC-88

Features

- Low Gate Charge for Fast Switching
- Small Footprint 30% Smaller than TSOP-6
- ESD Protected Gate
- AEC Q101 Qualified NVTJD4001N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Low Side Load Switch
- Li-Ion Battery Supplied Devices Cell Phones, PDAs, DSC
- Buck Converters
- Level Shifts

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

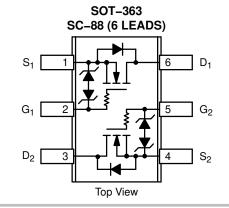
Param	Symbol	Value	Units		
Drain-to-Source Voltage	V_{DSS}	30	V		
Gate-to-Source Voltage	V _{GS}	±20	V		
Current (Note 1) State		T _A = 25 °C	I _D	250	mA
		T _A = 85 °C		180	
Power Dissipation Steady (Note 1) State		T _A = 25 °C	P _D	272	mW
Pulsed Drain Current	I _{DM}	600	mA		
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			IS	250	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			T _L	260	°C

THERMAL RESISTANCE RATINGS (Note 1)

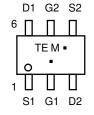
Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State	$R_{\theta JA}$	458	°C/W
Junction-to-Lead - Steady State	$R_{\theta JL}$	252	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1


1. Surface mounted on FR4 board using min pad size (Cu area = 0.155 in sq [1 oz] including traces).

ON Semiconductor®


www.onsemi.com

V _{(BR)DSS} R _{DS(on)} TYP		I _D Max
30 V	1.0 Ω @ 4.0 V	250 mA
	1.5 Ω @ 2.5 V	250 IIIA

MARKING DIAGRAM & PIN ASSIGNMENT

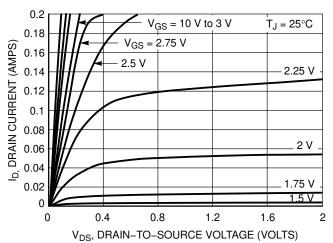
ΤE = Device Code М = Date Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTJD4001NT1G	SOT-363 (Pb-Free)	3000 / Tape & Reel
NVTJD4001NT1G	SOT-363 (Pb-Free)	3000 / Tape & Reel

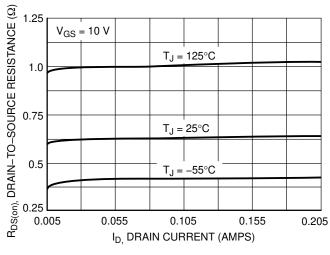
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise stated)

Parameter	Symbol	Test Con	dition	Min	Тур	Max	Unit
OFF CHARACTERISTICS			<u> </u>				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_{D}$	30			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J						mV/ °C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V	_{DS} = 30 V			1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_0$	_{SS} = ±10 V			±1.0	μΑ
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{I}$	ο = 100 μΑ	8.0	1.2	1.5	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				-3.2		mV/ °C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 4.0 V,	_D = 10 mA		1.0	1.5	Ω
		V _{GS} = 2.5 V,	_D = 10 mA		1.5	2.5	
Forward Transconductance	g _{FS}	$V_{DS} = 3.0 \text{ V},$	_D = 10 mA		80		mS
CHARGES AND CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 5.0 \text{ V}$			20	33	pF
Output Capacitance	C _{OSS}				19	32	
Reverse Transfer Capacitance	C _{RSS}				7.25	12	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 5.0 \text{ V}, \text{ V}$ $I_{D} = 0.0 \text{ V}$	_{DS} = 24 V,		0.9	1.3	nC
Threshold Gate Charge	Q _{G(TH)}	$I_D = 0$.	IA		0.2		
Gate-to-Source Charge	Q _{GS}				0.3		
Gate-to-Drain Charge	Q_{GD}		<u> </u>		0.2		
SWITCHING CHARACTERISTICS (No	ote 3)						
Turn-On Delay Time	td _(ON)	V _{GS} = 4.5 V, V			17		ns
Rise Time	tr	$I_D = 10$ mA, $R_G = 50 \Omega$			23		
Turn-Off Delay Time	td _(OFF)				94		
Fall Time	tf				82		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.65	0.7	V
		$I_S = 10 \text{ mA}$	T _J = 125°C		0.45		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, \text{ dI}_S/\text{dt} = 8.0 \text{ A/}\mu\text{s}, \\ I_S = 10 \text{ mA}$			12.4		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{2.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 3. Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

 $V_{DS} = 5 V$ ID, DRAIN CURRENT (AMPS) 0.08 0.06 $T_J = 125^{\circ}C$ 0.04 0.02 $T_J = -55^{\circ}C$ 0 1.2 1.6 2.2 1.4 1.8 2 1 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

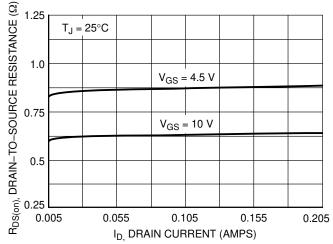
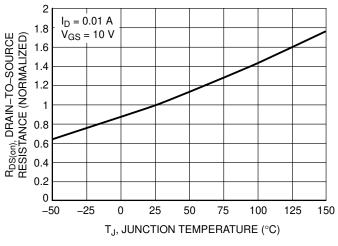



Figure 3. On–Resistance vs. Drain Current and Temperature

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

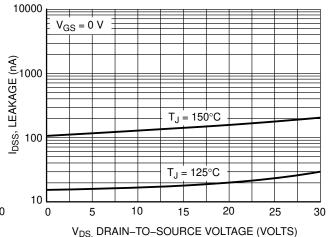
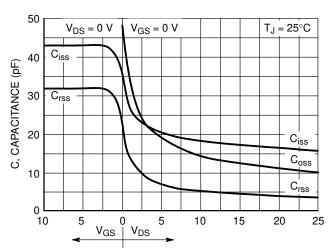
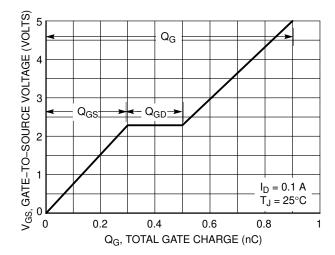




Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

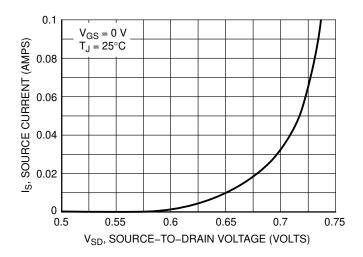


Figure 9. Diode Forward Voltage vs. Current

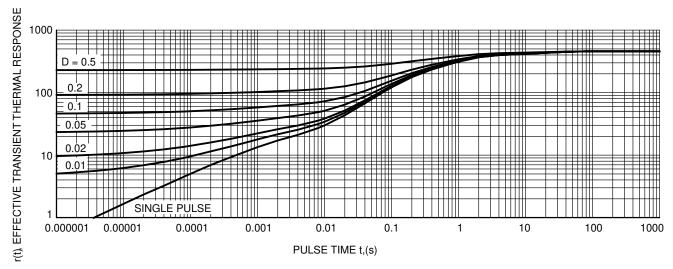
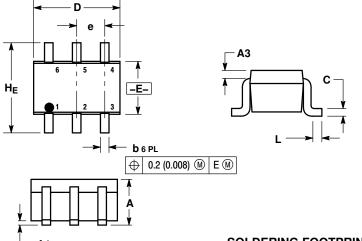
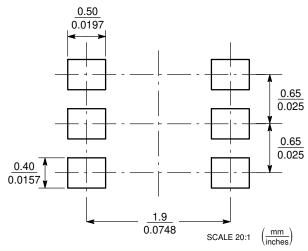



Figure 10. Thermal Response

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE W

NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH
- 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MIL	LIMETE	ERS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
A3	0.20 REF			0.008 REF			
b	0.10	0.21	0.30	0.004	0.008	0.012	
С	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
E	1.15	1.25	1.35	0.045	0.049	0.053	
е	0.65 BSC			0.026 BSC			
Ĺ	0.10	0.20	0.30	0.004	0.008	0.012	
HE	2.00	2.10	2.20	0.078	0.082	0.086	

STYLE 26:

- PIN 1. SOURCE 1 2. GATE 1
 - 3.
 - DRAIN 2 SOURCE 2
 - GATE 2 DRAIN 1

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the unarregistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor

P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative