imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

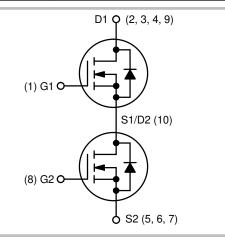
Dual N-Channel Power MOSFET

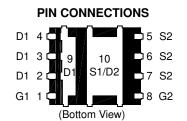
30 V, High Side 18 A / Low Side 27 A, Dual N-Channel SO8FL

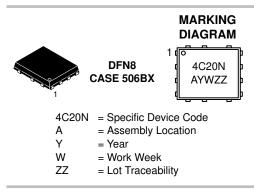
Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications


- DC–DC Converters
- System Voltage Rails
- Point of Load




ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	7.3 mΩ @ 10 V	10 4
30 V	10.8 mΩ @ 4.5 V	18 A
Q2 Bottom	3.4 mΩ @ 10 V	27 A
FET 30 V	5.2 mΩ @ 4.5 V	27 A

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage			Q1	V _{GS}	±20	V
Gate-to-Source Voltage			Q2			
Continuous Drain Current $R_{\theta JA}$ (Note 1)		T _A = 25°C	Q1	I _D	12	
		T _A = 85°C			8.6	
		T _A = 25°C	Q2		18	A
		T _A = 85°C			13	
Power Dissipation		T _A = 25°C	Q1	P _D	1.88	W
R0JA (Note 1)			Q2		1.97	
Continuous Drain Current $R_{\theta JA} \le 10$ s (Note 1)		T _A = 25°C	Q1	Ι _D	18.2	
		T _A = 85°C			13.1	
	Steady	T _A = 25°C	Q2		27.4	A
	State	T _A = 85°C			19.8	
Power Dissipation		T _A = 25°C	Q1	P _D	4.37	W
$R_{\theta JA} \leq 10 \text{ s} (\text{Note } 1)$			Q2		4.6	
Continuous Drain Current		T _A = 25°C	Q1	Ι _D	9.1	
R _{0JA} (Note 2)		$T_A = 85^{\circ}C$			6.6	
		T _A = 25°C	Q2		13.7	A
		$T_A = 85^{\circ}C$			9.9	
Power Dissipation		T _A = 25 °C	Q1	PD	1.09	W
R _{0JA} (Note 2)			Q2		1.15	
Pulsed Drain Current		TA = 25°C	Q1	I _{DM}	55	Α
		tp = 10 μs	Q2		82	
Operating Junction and Storage Temperature			Q1	T _J , T _{STG}	-55 to +150	°C
			Q2			
Source Current (Body Diode)				ا _S	4.0	Α
	Q2		4.2			
Drain to Source DV/DT		dV/dt	6	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T	Q1	EAS	16	mJ		
= 50 V, V_{GS} = 10 V, L = 0.1 mH, R_{G} = 25 Ω)	Q2	EAS	42			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	FET	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	Q1	R_{\thetaJA}	66.5	
	Q2		63.3	
Junction-to-Ambient - Steady State (Note 4)	Q1	R_{\thetaJA}	114.3	
	Q2	1	108.7	00.000
Junction-to-Ambient – (t \leq 10 s) (Note 3)	Q1	R_{\thetaJA}	28.6	°C/W
	Q2	1	27.2	
Junction-to-Case - (Drain)	Q1	$R_{ extsf{ heta}JC}$	5.4	
	Q2	1	3.7	

Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	FET	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Drain-to-Source Breakdown	Q1	V _{(BR)DSS}	$V_{GS} = 0 V, I_D$	= 250 μA	30			V
Voltage	Q2		V _{GS} = 0 V, I	_D = 1 mA	30			
Drain-to-Source Breakdown	Q1	V _{(BR)DSS} / T _J				14.5		mV/°C
Voltage Temperature Coefficient	Q2	۱J				12		
Zero Gate Voltage Drain Cur-	Q1	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	$T_J = 25^{\circ}C$			1	μΑ
rent			$V_{DS} = 24 V$	T _J = 125°C			10	
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			10	
Gate-to-Source Leakage Cur-	Q1	I _{GSS}	$V_{DS} = 0 V, V_{C}$	_{as} = ±20 V			±100	nA
rent	Q2						±100	
ON CHARACTERISTICS (Note 5))					-		-
Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{DS}$	₀ = 250 μA	1.3		2.1	V
	Q2				1.3		2.1	
Negative Threshold Temper-	Q1	V _{GS(TH)} / T _J				4.7		mV/°C
ature Coefficient	Q2	IJ				5.1		1
Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A		5.8	7.3	

Drain-to-Source On Resist-	Q1	R _{DS(on)}	V _{GS} = 10 V	I _D = 10 A	5.8	7.3	
ance			V _{GS} = 4.5 V	I _D = 10 A	8.7	10.8	m O
	Q2		V _{GS} = 10 V	I _D = 20 A	2.7	3.4	mΩ
			V _{GS} = 4.5 V	I _D = 20 A	4.0	5.2	
Forward Transconductance	Q1	9fs	V _{DS} = 1.5 V, I _D = 10 A		43		S
	Q2				68		

5. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Мах	Unit	
CHARGES, CAPACITANCES & GATE RESISTANCE								
Innut Consolitores	Q1	0			970			
Input Capacitance	Q2	C _{ISS}			1950			
	Q1	0			430			
Output Capacitance	Q2	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V		990		pF	
Devery Orace iterate	Q1	_			125			
Reverse Capacitance	Q2	C _{RSS}			50			
Tabal Qada Qhanna	Q1	~			9.3			
Total Gate Charge	Q2	Q _{G(TOT)}			13			
	Q1				1.6			
Threshold Gate Charge	Q2	Q _{G(TH)}			3.3			
	Q1		$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V}; I_{D} = 10 \text{ A}$		3.3		nC	
Gate-to-Source Charge	Q2	Q _{GS}			6.0		1	
	Q1				4.2		1	
Gate-to-Drain Charge	Q2	Q _{GD}			3.0		1	
	Q1			19		1		
Total Gate Charge	Q2	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 10 \text{ A}$		29		nC	
SWITCHING CHARACTERISTIC	S (Note 6	6)						
	Q1		V_{GS} = 4.5 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω		9.0			
Turn-On Delay Time	Q2	t _{d(ON)}			11			
	Q1				33			
Rise Time	Q2	t _r			32			
	Q1				15		ns	
Turn-Off Delay Time	Q2	t _{d(OFF)}			20		1	
	Q1				5.0			
Fall Time	Q2	t _f			5.0			
SWITCHING CHARACTERISTIC	CS (Note 6	6)						
T O D I T	Q1				6.0			
Turn-On Delay Time	Q2	t _{d(ON)}			8.0			
	Q1	t _r			26			
Rise Time	Q2		$V_{00} = 10 \text{ V}$ $V_{00} = 15 \text{ V}$		26			
	Q1		V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω		18		ns	
Turn-Off Delay Time	Q2	t _{d(OFF)}			25			
	Q1		1		4.0		-	
Fall Time	Q2	t _f			4.0		1	
DRAIN-SOURCE DIODE CHARACTERISTICS								
			$V_{CS} = 0 V_{.}$ $T_{J} = 25^{\circ}C$		0.75	1.0		

Forward Voltage	Q1		$V_{GS} = 0 V,$ $I_{S} = 3 A$	$T_J = 25^{\circ}C$	0.75	1.0	
		N		$T_J = 125^{\circ}C$	0.62		
	Q2	VSD	V _{GS} = 0 V,	$T_J = 25^{\circ}C$	0.45	0.70	v
		I _S = 3 A	T,₁ = 125°C	0.37			

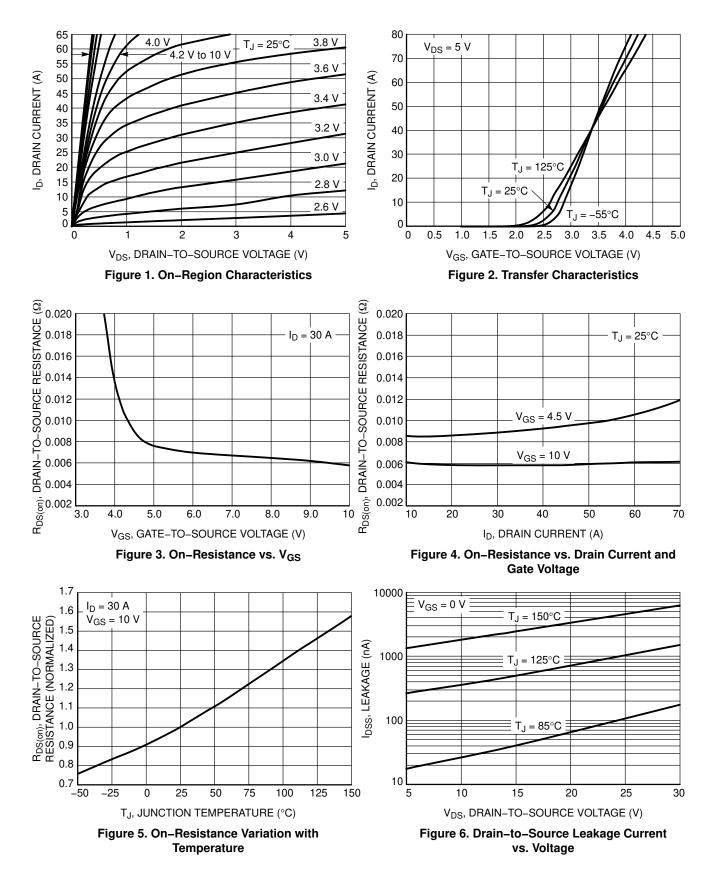
5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%. 6. Switching characteristics are independent of operating junction temperatures.

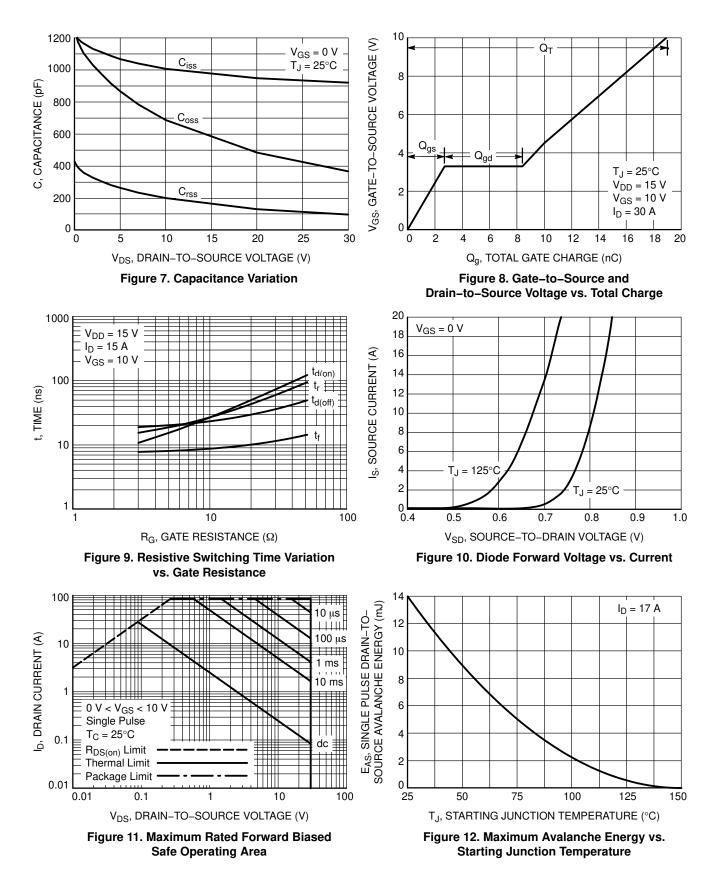
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

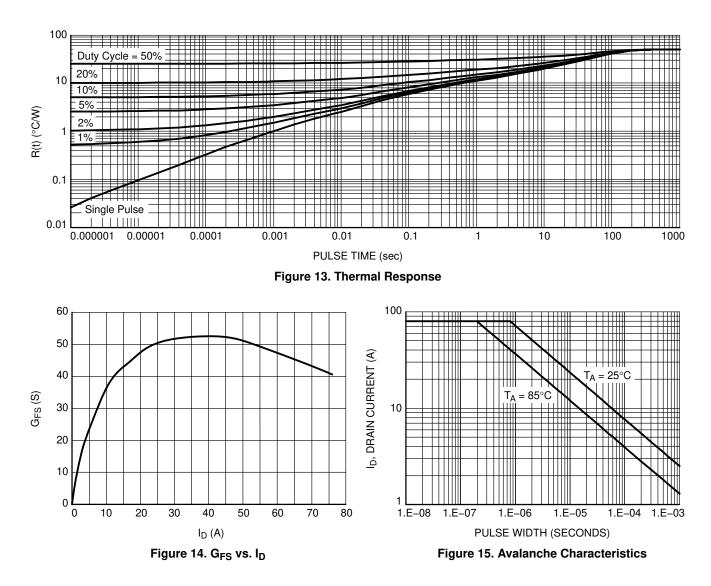
Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit
DRAIN-SOURCE DIODE CHARA	DRAIN-SOURCE DIODE CHARACTERISTICS						
Roverse Resevent Time	Q1	÷			23		
Reverse Recovery Time	Q2	t _{RR}			38		
Charge Time	Q1	ta	V _{GS} = 0 V, d _{IS} /d _t = 100 A/μs, I _S = 30 A		11.6		20
Charge Time	Q2				18.6		ns
Disabaras Tima	Q1	th			11.4		
Discharge Time	Q2	tb			19.4		
Deverse Desevery Charge	Q1	0			10		20
Reverse Recovery Charge	Q2	Q _{RR}			25		nC

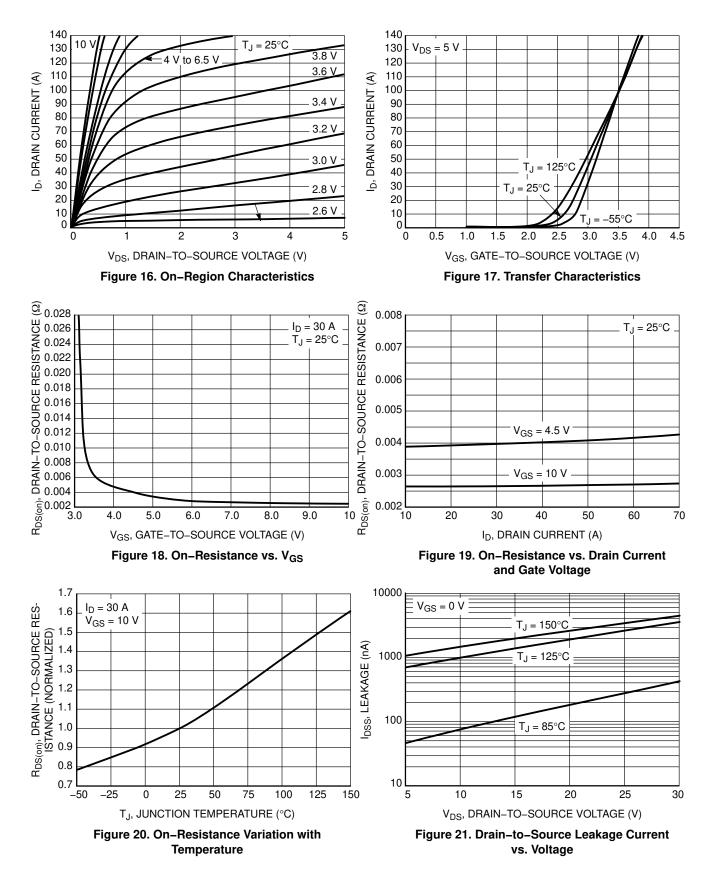
PACKAGE PARASITIC VALUES

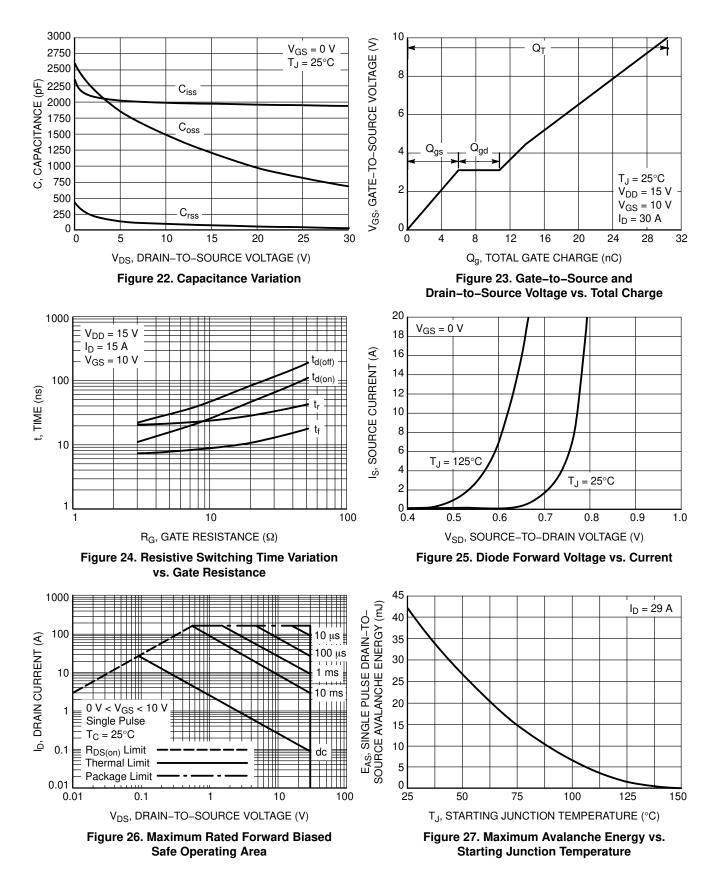
	Q1	1			0.38		
Source Inductance	Q2	LS			0.65		nH
Droin Industance	Q1	1			0.054		
Drain Inductance	Q2	LD			0.007		nH
Cata Industance	Q1	1	$T_A = 25^{\circ}C$		1.5		
Gate Inductance	Q2	L _G			1.5		nH
Gate Resistance	Q1	Р		0.3	1.0	2.0	0
Gale Resistance	Q2	R _G		0.3	1.0	2.0	Ω

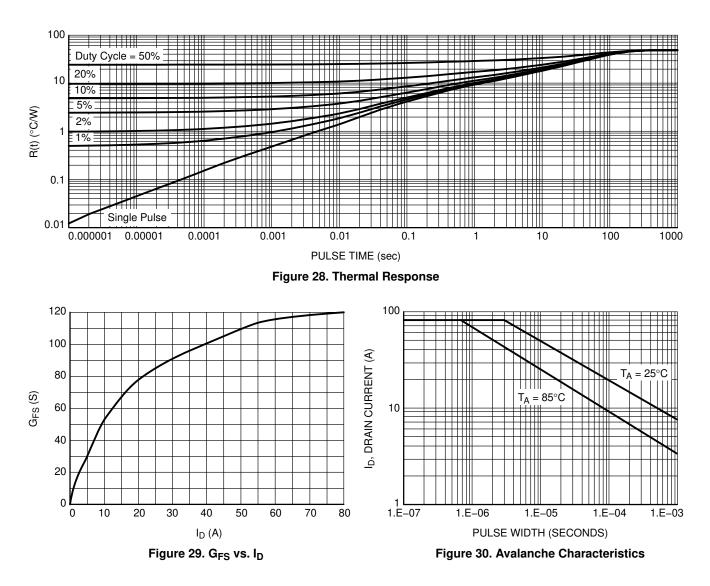

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

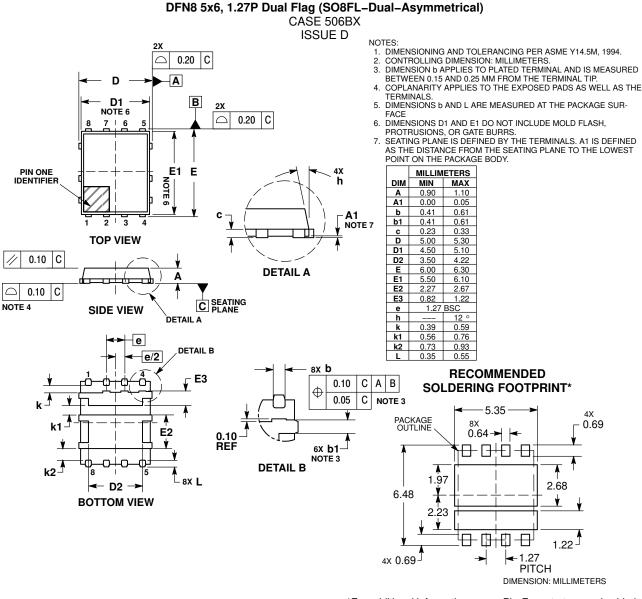

6. Switching characteristics are independent of operating junction temperatures.


ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C20NT1G	DFN8 (Pb–Free)	1500 / Tape & Reel


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.





PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns me rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products harameters, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use geneses to all subject to all applicable copyright laws and is not for resale

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative