

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

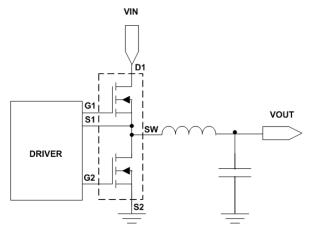
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PowerPhase, Dual N-Channel SO8FL


30 V, High Side 20 A / Low Side 32 A

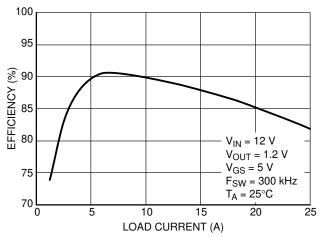
Features

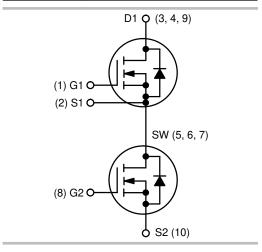
- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

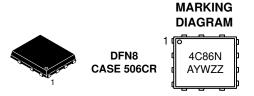
Applications

- DC-DC Converters
- System Voltage Rails
- Point of Load

Figure 1. Typical Application Circuit




Figure 2. Typical Efficiency Performance POWERPHASEGEVB Evaluation Board


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
Q1 Top FET	5.4 mΩ @ 10 V	20 A
30 V	8.1 mΩ @ 4.5 V	20 A
Q2 Bottom	2.6 mΩ @ 10 V	32 A
FET 30 V	3.4 mΩ @ 4.5 V	32 A

PIN CONNECTIONS D1 4 5 5 SW D1 3 9 10 6 SW S1 2 7 SW G1 1 (Bottom View)

4C86N = Specific Device Code A = Assembly Location Y = Year

Y = Year W = Work Week

ZZ = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit			
Drain-to-Source Voltage	Q1	V _{DSS}	30	V			
Drain-to-Source Voltage	Q2						
Gate-to-Source Voltage	Q1	V _{GS}	±20	٧			
Gate-to-Source Voltage			Q2				
Continuous Drain Current R _{0JA} (Note 1)		T _A = 25°C	Q1	I _D	14.8		
		T _A = 85°C			10.7		
		T _A = 25°C	Q2		23.7	A	
		T _A = 85°C			17.1		
Power Dissipation		T _A = 25°C	Q1	P_{D}	1.89	W	
RθJA (Note 1)			Q2				
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	I _D	20.2		
		T _A = 85°C	1		14.5	A	
	Steady	T _A = 25°C	Q2		32.3		
	State	T _A = 85°C			23.3		
Power Dissipation	7	T _A = 25°C	Q1	P_{D}	3.51	W	
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2				
Continuous Drain Current		T _A = 25°C	Q1	I _D	11.3		
R _{0JA} (Note 2)		T _A = 85°C			8.1		
		T _A = 25°C	Q2		18.1	_ A	
		T _A = 85°C			13.0		
Power Dissipation		T _A = 25 °C	Q1	P _D	1.10	W	
R _{θJA} (Note 2)			Q2				
Pulsed Drain Current		T _A = 25°C	Q1	I _{DM}	160	Α	
		t _p = 10 μs	Q2		280		
Operating Junction and Storage Temperature	Q1	T _J , T _{STG}	-55 to +150	°C			
	Q2						
Source Current (Body Diode)	Q1	I _S	10	Α			
	Q2		10				
Drain to Source DV/DT		dV/dt	6	V/ns			
Single Pulse Drain-to-Source Avalanche Energy (TJ	Q1	EAS	20	mJ			
$V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, L = 0.1 \text{ mH}, R_G = 25 \Omega$	Q2	EAS	80				
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T _L	260	°C			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface—mounted on FR4 board using 1 sq—in pad, 2 oz Cu.

2. Surface—mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Top) - Steady State (Note 3)	$R_{ heta JC}$	3.3	
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	66.0	°C/W
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	113.7	3 C/VV
Junction–to–Ambient – (t ≤ 10 s) (Note 3)	$R_{\theta JA}$	35.6	

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	FET	Symbol	Symbol Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS					•	•			
Drain-to-Source Break-	Q1	.,	V_{GS} = 0 V, I_D = 250 μA		30			V	
down Voltage	Q2	V _{(BR)DSS}			30				
Drain-to-Source Break-	Q1	V _(B,R) DSS				17		mV / °C	
down Voltage Temperature Coefficient	Q2	/T _J				16.5			
Zero Gate Voltage Drain	Q1	I _{DSS}	$V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$				1		
Current			$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	μΑ	
	Q2		V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1] µA	
Gate-to-Source Leakage	Q1	I_{GSS}	V _{GS} = 0 V, VDS = +20 V				100	^	
Current							100	- nA	
ON CHARACTERISTICS (Not	e 5)								
Gate Threshold Voltage	Q1	V _{GS(TH)}	$V_{GS}=V_{DS},I_D=250\;\mu A$		1.3		2.2	V	
	Q2			1.3		2.2			
Negative Threshold Temperature Coefficient	Q1	$V_{GS(TH)}$ / T_J				4.5		mV /	
ature Coemcient	Q2	' ' J				4.6		°C	
Drain-to-Source On Resistance	Q1	R _{DS(on)}	V _{GS} = 10 V I _D = 30 A			4.3	5.4		
ance			$V_{GS} = 4.5 \text{ V}$	I _D = 18 A		6.5	8.1	mΩ	
	Q2		$V_{GS} = 10 \text{ V}$	I _D = 30 A		1.7	2.6		
			$V_{GS} = 4.5 \text{ V}$ $I_D = 12.5 \text{ A}$			2.4	3.4		
CAPACITANCES									
Innut Canacitance	Q1	Cina				1153			
Input Capacitance —		C _{ISS}				3050			
Output Capacitance	Q1	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V			532		→ pF	
Output Oupdollarios	Q2 Q1			1650					
Reverse Capacitance				107					
ricverse Capacitanice	Q2	ORSS				77			

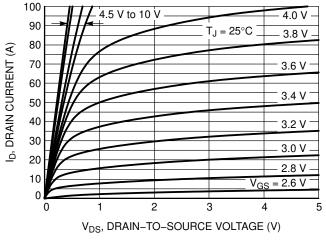
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{3.} Surface–mounted on FR4 board using 1 sq–in pad, 2 oz Cu.
4. Surface–mounted on FR4 board using the minimum recommended pad size of 100 mm².

^{5.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

^{6.} Switching characteristics are independent of operating junction temperatures.

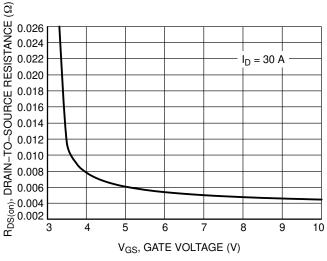
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E			•		
Tatal Oata Ohama	Q1				10.9			
Total Gate Charge	Q2	$Q_{G(TOT)}$			21.6			
Threshold Cata Charge	Q1	0				1.2		
Threshold Gate Charge	Q2	Q _{G(TH)}	V 45VV	15 V: 1 20 A		1.4		,,,
Coto to Source Charge	Q1	0	$V_{GS} = 4.5 \text{ V}, V_{DS}$	= 15 V, I _D = 30 A		3.4		nC
Gate-to-Source Charge	Q2	Q _{GS}				8.6		
Gate-to-Drain Charge	Q1	0				5.4		
Gate-to-Drain Charge	Q2	Q_GD				5.5		
Total Cata Chargo	Q1	0	V 10 V V	15 V: I- 20 A		22.2		20
Total Gate Charge	Q2	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS}$	= 15 V, ID = 30 A		47.5		nC
Gate Resistance	Q1	R _G	т	0F°C		1.0		0
Gate Resistance	Q2		T _A =	25°C		1.0		Ω
SWITCHING CHARACTERIS	STICS (No	te 6)						
Turn On Delay Time	Q1				8.9			
Turn-On Delay Time	Q2	[[] d(ON)	t _d (ON)		8.3			
Dies Time	Q1		$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			21.2		
Rise Time	Q2	t _r				15.1		
Turn Off Dalay Time	Q1		$I_{D} = 15 \text{ A},$	$R_G = 3.0 \Omega$		15.3		ns
Turn-Off Delay Time	Q2	t _{d(OFF)}				19.3		
Call Time	Q1					4.4		
Fall Time	Q2	t _f				4.2		
SWITCHING CHARACTERIS	STICS (No	te 6)						
Turn-On Delay Time	Q1					6.7		
rum-On Delay Time	Q2	t _{d(ON)}				6.3		
Diag Time	Q1					19.5		
Rise Time	Q2	t _r	V _{GS} = 10 V,	V _{DS} = 15 V,		13.8		
Turn Off Dalay Times	Q1		$V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			20.1		- ns
Turn-Off Delay Time	Q2	t _{d(OFF)}				22.8		
- " T	Q1					2.8		
Fall Time	Q2	t _f				3.2		
DRAIN-SOURCE DIODE CH	ARACTE	RISTICS						
		$V_{GS} = 0 \text{ V},$ $I_{S} = 10 \text{ A}$ $T_{J} = 25^{\circ}\text{C}$ $T_{L} = 125^{\circ}\text{C}$			0.80			
Command Valta	Q1	V	I _S = 10 A	T _J = 125°C		0.60		v
Forward Voltage	00	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.78		
		T _J = 125°C		0.62				

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	Test Condition	Min	Тур	Max	Unit		
DRAIN-SOURCE DIODE CHA	RACTE	RISTICS							
Daversa Dasavari Tima	Q1				29.1		-		
Reverse Recovery Time	Q2	t _{RR}			33.7				
Ola anno Tina	Q1				14.5				
Charge Time	Q2	ta		17.4	17.4		ns		
Disabassa Tisa	Q1	41-	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 30 \text{ A}$		14.6		1		
Discharge Time	Q2	tb		16.3	16.3				
Davaraa Daaayariy Charga	Q1	Q _{RR}		_			21		~C
Reverse Recovery Charge	Q2				27.5		nC		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

100 90 $V_{DS} = 3 V$ 80 ID, DRAIN CURRENT (A) 70 60 50 40 30 20 $T_J = 125^{\circ}C$ 10 T_J = -55°C $T_J = 25^{\circ}C$ 0.5 1.0 2.5 3.0 3.5 4.0 1.5 2.0 V_{GS}, GATE-TO-SOURCE VOLTAGE (V)

Figure 3. On-Region Characteristics

Figure 4. Transfer Characteristics

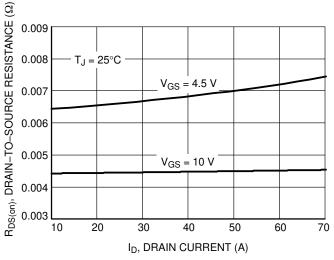
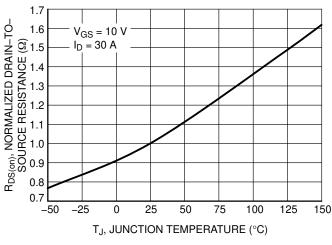



Figure 5. On-Resistance vs. Gate-to-Source Voltage

Figure 6. On-Resistance vs. Drain Current and Gate Voltage

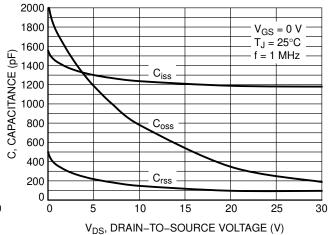


Figure 7. On–Resistance Variation with Temperature

Figure 8. Capacitance Variation

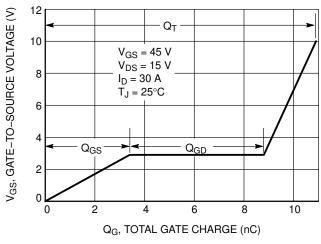


Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

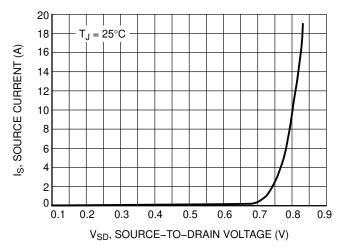


Figure 10. Diode Forward Voltage vs. Current

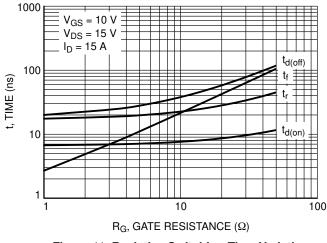


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

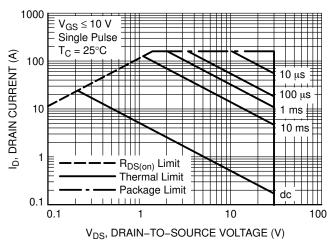


Figure 12. Maximum Rated Forward Biased Safe Operating Area

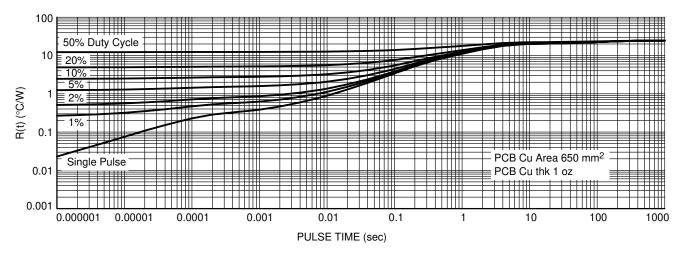


Figure 13. Thermal Characteristics

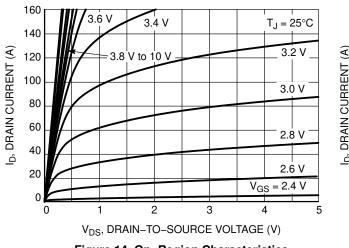


Figure 14. On-Region Characteristics

Figure 15. Transfer Characteristics

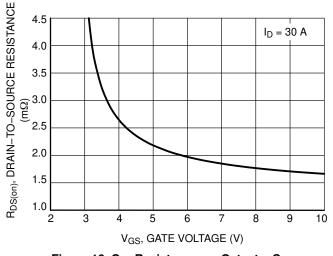


Figure 16. On-Resistance vs. Gate-to-Source Voltage

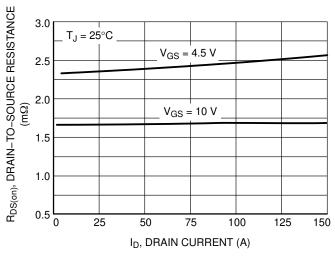


Figure 17. On–Resistance vs. Drain Current and Gate Voltage

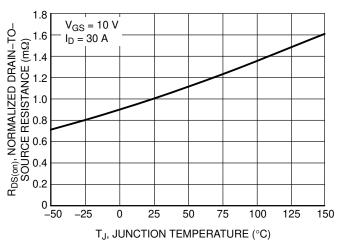


Figure 18. On–Resistance Variation with Temperature

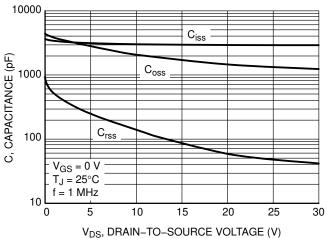


Figure 19. Capacitance Variation

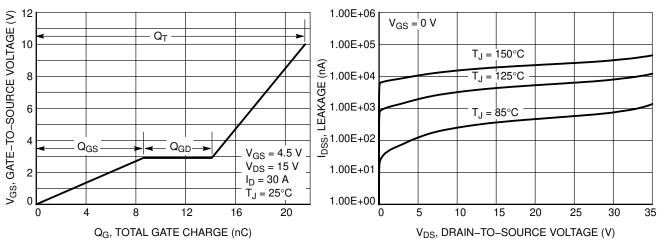


Figure 20. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

Figure 21. Drain-to-Source Leakage Current vs. Voltage

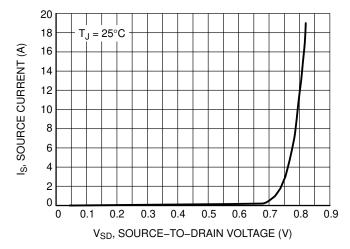


Figure 22. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS - Q2

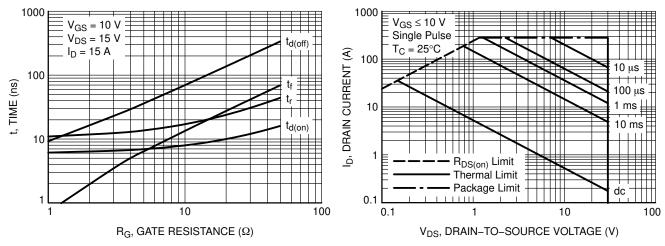


Figure 23. Resistive Switching Time Variation vs. Gate Resistance

Figure 24. Maximum Rated Forward Biased Safe Operating Area

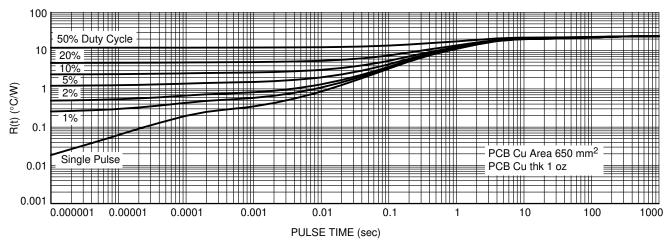
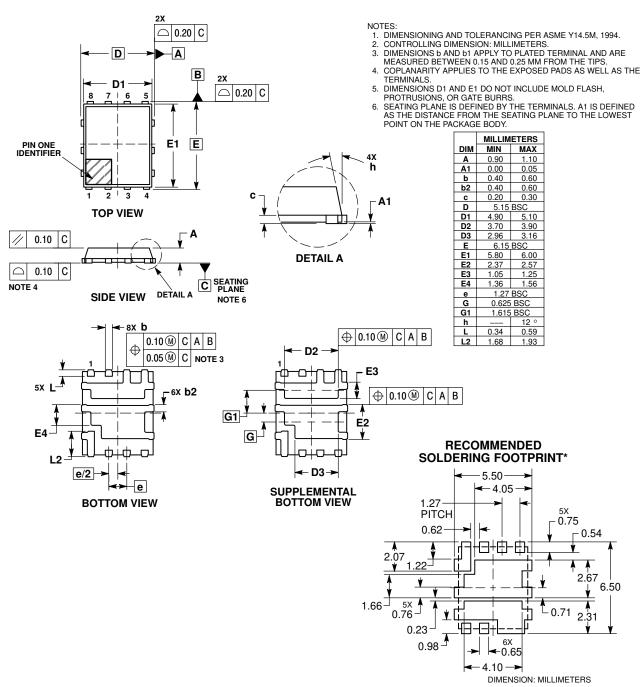


Figure 25. Thermal Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C86NT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4C86NT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P PowerPhase FET

CASE 506CR ISSUE C

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative