

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PowerPhase, Dual N-Channel SO8FL

30 V, High Side 20 A / Low Side 24 A

Features

- Co-Packaged Power Stage Solution to Minimize Board Space
- Minimized Parasitic Inductances
- Optimized Devices to Reduce Power Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- DC-DC Converters
- System Voltage Rails
- Point of Load

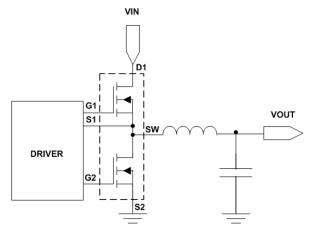
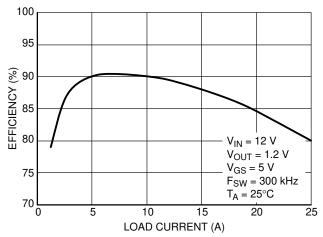
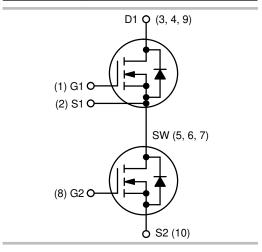


Figure 1. Typical Application Circuit




Figure 2. Typical Efficiency Performance **POWERPHASEGEVB Evaluation Board**

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
Q1 Top FET	5.4 mΩ @ 10 V	20 A
30 V	8.1 mΩ @ 4.5 V	20 A
Q2 Bottom	4.4 mΩ @ 10 V	24 A
FET 30 V	6.0 mΩ @ 4.5 V	24 A

PIN CONNECTIONS 5 SW 6 SW 10 S2 D1 7 SW 8 G2 G1 (Bottom View)

DFN8 CASE 506CR

MARKING

4C88N = Specific Device Code = Assembly Location

Υ = Year

W = Work Week = Lot Traceability

ORDERING INFORMATION

See detailed ordering and shipping information on page 10 of this data sheet.

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise stated)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage	Q1	V _{DSS}	30	V		
Drain-to-Source Voltage	Q2					
Gate-to-Source Voltage	Q1	V _{GS}	±20	V		
Gate-to-Source Voltage			Q2			
Continuous Drain Current R _{0JA} (Note 1)	Continuous Drain Current $R_{\theta JA}$ (Note 1) $T_A = 25^{\circ}C$					
		T _A = 85°C	1		11.1	1 ,
		T _A = 25°C	Q2		18.7	A
		T _A = 85°C			13.5	1
Power Dissipation		T _A = 25°C	Q1	P _D	1.89	W
RθJA (Note 1)			Q2			
Continuous Drain Current $R_{\theta JA} \le 10 \text{ s (Note 1)}$		T _A = 25°C	Q1	I _D	21.0	
		T _A = 85°C			15.1	- A
	Steady	T _A = 25°C	Q2		25.4	
	State	T _A = 85°C			18.3	
Power Dissipation		T _A = 25°C	Q1	P_{D}	3.51	W
$R_{\theta JA} \le 10 \text{ s (Note 1)}$			Q2			
Continuous Drain Current		$T_A = 25^{\circ}C$	Q1	I _D	11.7	
R _{θJA} (Note 2)		T _A = 85°C			8.5	A
		$T_A = 25^{\circ}C$	Q2		14.2	^
		$T_A = 85^{\circ}C$			10.3	
Power Dissipation		T _A = 25 °C	Q1	P_{D}	1.10	W
R _{θJA} (Note 2)			Q2			
Pulsed Drain Current		T _A = 25°C	Q1	I _{DM}	160	Α
		t _p = 10 μs	Q2		240	
Operating Junction and Storage Temperature			Q1	T_J , T_{STG}	-55 to +150	°C
	Q2					
Source Current (Body Diode)	Q1	I _S	10	Α		
	Q2		10			
Drain to Source DV/DT		dV/dt	6	V/ns		
Single Pulse Drain-to-Source Avalanche Energy (T V_{DD} = 50 V, V_{GS} = 10 V, L = 0.1 mH, R_{G} = 25 Ω)	Q1	EAS	20	mJ		
ν _{DD} – 30 ν, ν _{GS} – 10 ν, L = 0.1 IIII1, η _G = 23 Ω)	Q2	EAS	29			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)				TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface—mounted on FR4 board using 1 sq—in pad, 2 oz Cu.

2. Surface—mounted on FR4 board using the minimum recommended pad size of 100 mm².

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	66.0	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	113.7	°C/W
Junction–to–Ambient – (t \leq 10 s) (Note 3)	$R_{\theta JA}$	35.6	

- 3. Surface-mounted on FR4 board using 1 sq-in pad, 2 oz Cu.
- 4. Surface-mounted on FR4 board using the minimum recommended pad size of 100 mm².

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

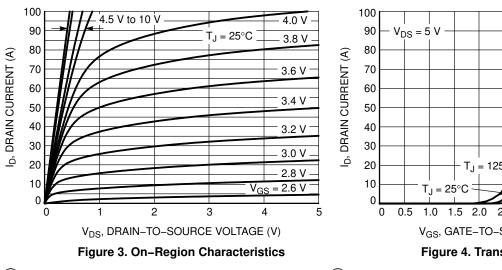
Parameter	FET	Symbol	ymbol Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•					•	•	
Drain-to-Source Break-	Q1	.,	V _{GS} = 0 V, I _D = 250 μA		30			٧
down Voltage	Q2	V _{(BR)DSS}	$V_{GS} = 0 V$,	I _D = 250 μA	30			
Drain-to-Source Break-	Q1	V _{(BB)DSS}				18		mV /
down Voltage Temperature Coefficient	Q2	V _{(BR)DSS} / T _J				17		°C
	Q1		$V_{GS} = 0 V$	T _J = 25°C			1	
Zero Gate Voltage Drain		I _{DSS}	$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	μA
Current	Q2	033	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1	pu 1
Gate-to-Source Leakage	Q1		V _{GS} :	= 0 V,			100	^
Current Q2		I _{GSS}	V _{DS} =	$V_{DS} = \pm 20 \text{ V}$			100	nA
ON CHARACTERISTICS (Not	e 5)							
Gate Threshold Voltage	Q1	V	V _{GS} = VDS,		1.3		2.2	V
Gate Threshold Voltage		V _{GS(TH)}	$I_{D} = 250 \mu\text{A}$		1.3		2.2	
Negative Threshold Temper-	Q1	V _{GS(TH)} /				4.5		mV /
ature Coefficient	Q2	ŤJ				4.6		°C
	Q1	R _{DS(on)}	$V_{GS} = 10 \text{ V}$	I _D = 10 A		4.3	5.4	
Drain-to-Source On Resist-			$V_{GS} = 4.5 \text{ V}$	I _D = 10 A		6.5	8.1	mΩ
ance	Q2		$V_{GS} = 10 \text{ V}$	I _D = 20 A		2.8	4.4	
			V _{GS} = 4.5 V I _D = 20 A			4.0	6.0	
CAPACITANCES								
Input Capacitance	Q1	C _{ISS}				1252		
πραι σαρασιιαποσ	Q2 CISS			1546				
Output Capacitance	Q1	C _{OSS} V _{GS} = 0 V, f = 1 MHz, V _{DS} = 15 V		MHz Vpc = 15 V		610		pF
Calpat Capacitario	Q2	0 055	V _{GS} = 0 V, 1 = 1 MHz, V _{DS} = 15 V			841		
Reverse Capacitance	Q1	C _{RSS}				126		
Tiororoo Oapaoitanoo	Q2	∽ H55				39		

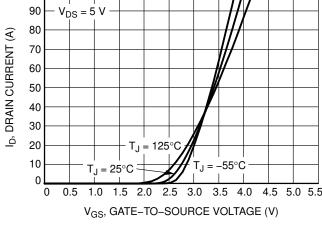
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)


Parameter	FET	Symbol	Test Co	ondition	Min	Тур	Max	Unit
CHARGES, CAPACITANCES	& GATE	RESISTANC	E				-	
T. 10 . 0	Q1					10.9		
Total Gate Charge	Q2	$Q_{G(TOT)}$			11			
T	Q1					1.2		
Threshold Gate Charge	Q2	$Q_{G(TH)}$	V 45VV	45.76.1 40.4		1.6		0
Cata ta Causaa Obassa	Q1	0	$V_{GS} = 4.5 \text{ V}, V_{DS}$	= 15 V; I _D = 10 A		3.4		nC
Gate-to-Source Charge	Q2	Q_{GS}				4.4		
Cata ta Duain Obanna	Q1	0				5.4		
Gate-to-Drain Charge	Q2	Q_{GD}				2.9		
Tatal Cata Chaves	Q1	0	V 10 V V	45.1/-1 40.4		22.2		
Total Gate Charge	Q2	$Q_{G(TOT)}$	$V_{GS} = 10 \text{ V}, V_{DS}$	= 15 V; I _D = 10 A		24.2		nC
Cata Basistanas	Q1	R_{G}	т.	0500		1.0		0
Gate Resistance	Q2		T _A =	25°C		1.0		Ω
SWITCHING CHARACTERIST	TICS (No	te 6)						
Turn On Dalay Time	Q1					9.4		
Turn-On Delay Time	Q2	t _{d(ON)}				10.7		
Dies Time	Q1					19		
Rise Time	Q2	t _r	V _{GS} = 4.5 V,	V _{DS} = 15 V,		4.8		
T O" D. l T	Q1		$V_{GS} = 4.5 \text{ V},$ $I_{D} = 15 \text{ A},$	$R_G = 3.0 \Omega$		16		ns
Turn-Off Delay Time	Q2	^t d(OFF)	t _{d(OFF)}	19.3				
Fall Times	Q1					4.6		
Fall Time	Q2	t _f				4.7		
SWITCHING CHARACTERIST	TICS (No	te 6)						
Turn On Dalay Time	Q1					6.8		
Turn-On Delay Time	Q2	t _{d(ON)}				7.5		
Dies Time	Q1					17		
Rise Time	Q2	t _r	V _{GS} = 10 V,	V _{DS} = 15 V,		2.7		
T O" D. l T	Q1		$V_{GS} = 10 \text{ V},$ $I_D = 15 \text{ A},$	$R_G = 3.0 \Omega$		20.6		ns
Turn-Off Delay Time	Q2 t _{d(O}	t _{d(OFF)}	t _f			24.8		
5 U.T.	Q1					2.64		
Fall Time	Q2	t _f				2.88		
DRAIN-SOURCE DIODE CHA	RACTE	RISTICS						
	$V_{GS} = 0 \text{ V},$ $T_{J} = 25^{\circ}\text{C}$		T _J = 25°C		0.82			
Famourd Walter	Q1	.,	$V_{GS} = 0 V$, $I_S = 10 A$	T _J = 125°C		0.64		
Forward Voltage	-00	V(3S - U V,	T _J = 25°C		0.8		V	
	Q2		$I_{S} = 10 \text{ A}$ $T_{J} = 125^{\circ}\text{C}$			0.62		


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	FET	Symbol	mbol Test Condition		Тур	Max	Unit		
DRAIN-SOURCE DIODE CHA	RACTE	RISTICS							
Daversa Dasavari Tima	Q1				29				
Reverse Recovery Time	Q2	t _{RR}			16.7				
Chargo Timo	Q1	to			14.2				
Charge Time	Q2	- ta			19.5		ns		
Disabarra Tira	Q1	41-	th.	th	$V_{GS} = 0 \text{ V}, d_{IS}/d_t = 100 \text{ A}/\mu\text{s}, I_S = 10 \text{ A}$		15.0		1
Discharge Time	Q2	tb		36.2		1			
Davara Dagavary Charge	Q1	Q _{RR}				18.1		~C	
Reverse Recovery Charge	Q2				27.4		nC		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.

Figure 4. Transfer Characteristics

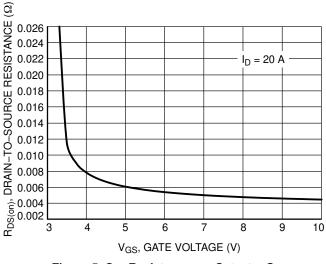


Figure 5. On-Resistance vs. Gate-to-Source Voltage

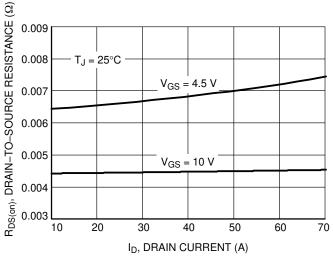


Figure 6. On-Resistance vs. Drain Current and **Gate Voltage**

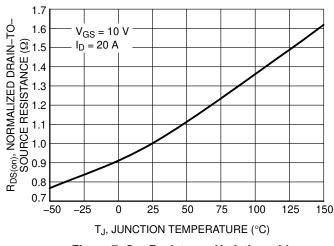


Figure 7. On-Resistance Variation with **Temperature**

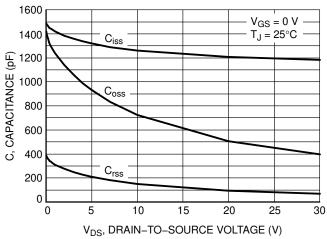


Figure 8. Capacitance Variation

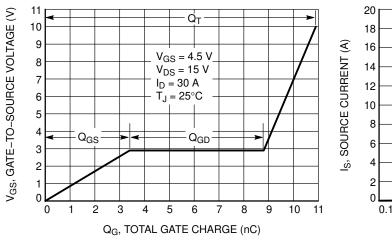


Figure 9. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

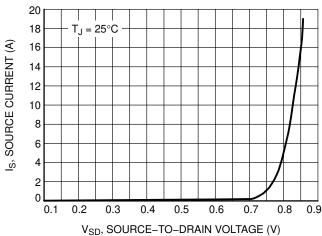


Figure 10. Diode Forward Voltage vs. Current

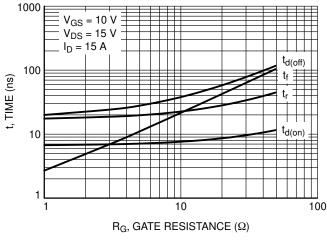


Figure 11. Resistive Switching Time Variation vs. Gate Resistance

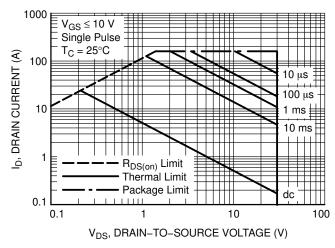


Figure 12. Maximum Rated Forward Biased Safe Operating Area

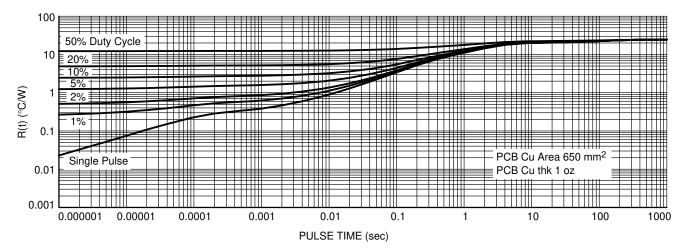


Figure 13. Thermal Characteristics

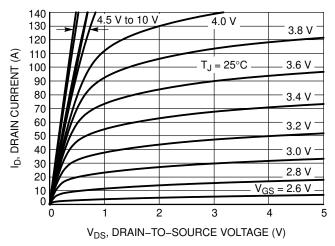


Figure 14. On-Region Characteristics

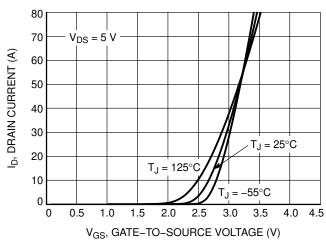


Figure 15. Transfer Characteristics

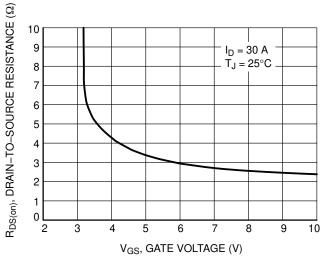


Figure 16. On-Resistance vs. Gate-to-Source Voltage

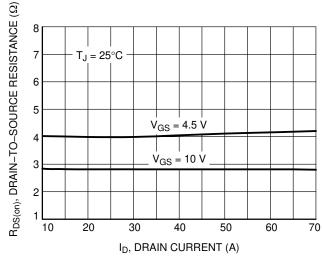


Figure 17. On–Resistance vs. Drain Current and Gate Voltage

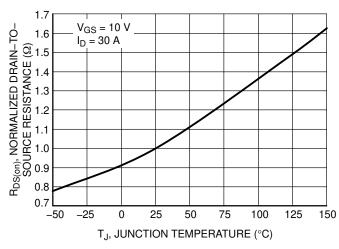


Figure 18. On–Resistance Variation with Temperature

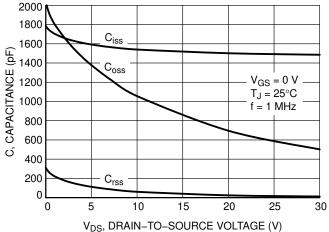


Figure 19. Capacitance Variation

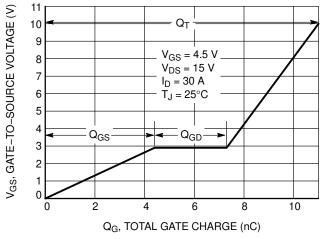


Figure 20. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

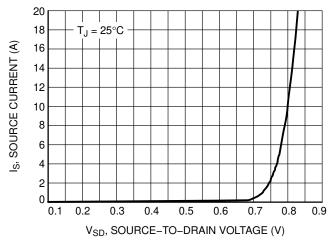


Figure 21. Diode Forward Voltage vs. Current

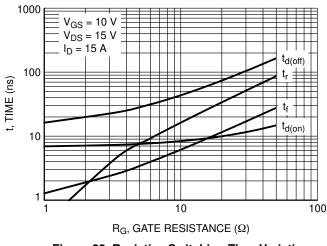


Figure 22. Resistive Switching Time Variation vs. Gate Resistance

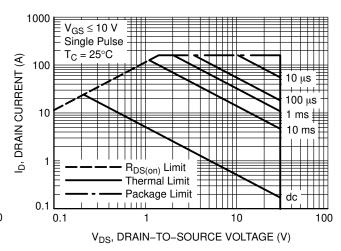


Figure 23. Maximum Rated Forward Biased Safe Operating Area

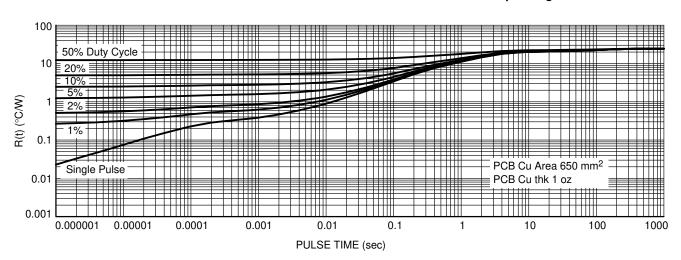
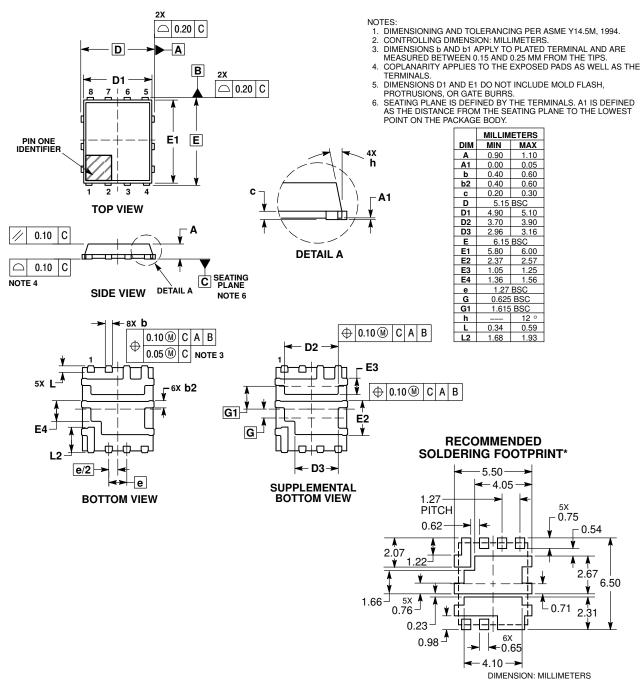


Figure 24. Thermal Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFD4C88NT1G	DFN8 (Pb-Free)	1500 / Tape & Reel
NTMFD4C88NT3G	DFN8 (Pb-Free)	5000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P PowerPhase FET

CASE 506CR ISSUE C

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative