imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET 25 V, 334 A, Single N–Channel, SO–8FL

Features

- Integrated Schottky Diode
- Optimized Design to Minimize Conduction and Switching Losses
- Optimized Package to Minimize Parasitic Inductances
- Optimized material for improved thermal performance
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- High Performance DC-DC Converters
- System Voltage Rails
- Netcom, Telecom
- Servers & Point of Load

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Parameter	Symbol	Value	Units
Drain-to-Source Voltage	V _{DSS}	25	V
Gate-to-Source Voltage	V _{GS}	±20	V
Continuous Drain Current $R_{\theta JA}$ (T _A = 25°C, Note 1)	۱ _D	54	A
Power Dissipation $R_{\theta JA}$ (T _A = 25°C, Note 1)	P _D	3.2	W
Continuous Drain Current $R_{\theta JC}$ (T _C = 25°C, Note 1)	۱ _D	334	A
Power Dissipation $R_{\theta JC}$ (T _C = 25°C, Note 1)	P _D	125	W
Pulsed Drain Current ($t_p = 10 \ \mu s$)	I _{DM}	568	Α
Single Pulse Drain-to-Source Avalanche Energy (Note 1) ($I_L = 57 A_{pk}, L = 0.3 mH$)	E _{AS}	487	mJ
Drain to Source dV/dt	dV/dt	7	V/ns
Maximum Junction Temperature	T _{J(max)}	150	°C
Storage Temperature Range	T _{STG}	–55 to 150	°C
Lead Temperature Soldering Reflow (SMD Styles Only), Pb-Free Versions (Note 2)	T _{SLD}	260	°C

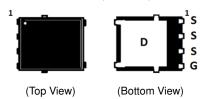
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Values based on copper area of 645 mm² (or 1 in²) of 2 oz copper thickness

- Values based on copper area of 645 mm² (or 1 in²) of 2 oz copper thickness and FR4 PCB substrate.
- For more information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
- 3. This is the absolute maximum rating. Parts are 100% UIS tested at T_J = 25°C, V_{GS} = 10 V, I_L = 37 A, E_{AS} = 205 mJ.

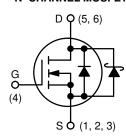
THERMALCHARACTERISTICS

Parameter	Symbol	Мах	Units
Thermal Resistance, Junction-to-Ambient (Note 1 and 4) Junction-to-Case (Note 1 and 4)	${\sf R}_{ heta {\sf JA}} \ {\sf R}_{ heta {\sf JC}}$	38.9 1.0	°C/W

4. Thermal Resistance $R_{\theta JA}$ and $R_{\theta JC}$ as defined in JESD51–3.


ON Semiconductor®

www.onsemi.com

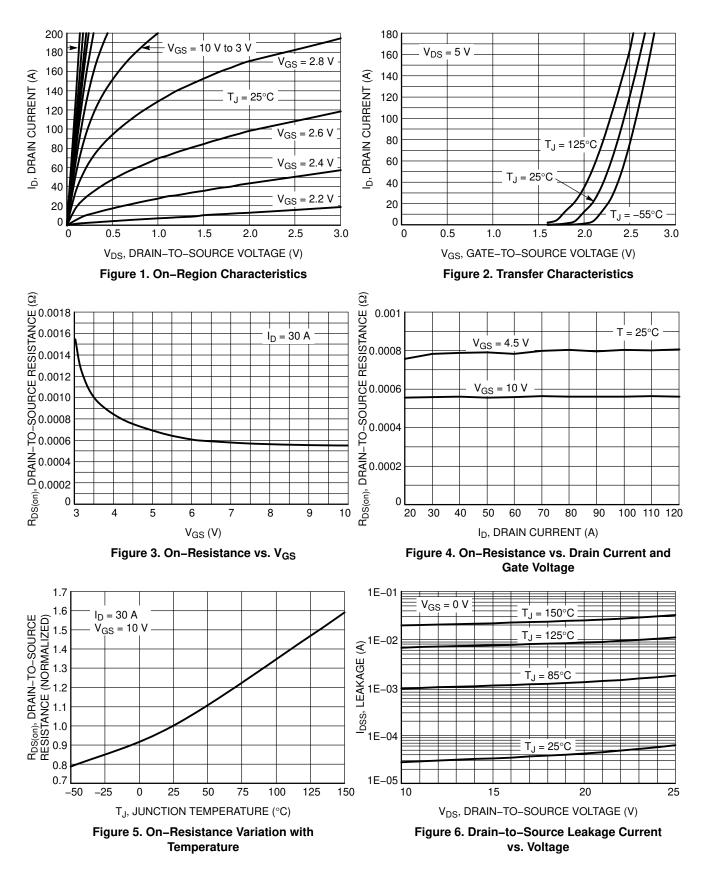

V _{GS}	MAX R _{DS(on)}	TYP Q _{GTOT}
4.5 V	1.0 mΩ	37.8 nC
10 V	$0.7 \text{ m}\Omega$	82 nC

PIN CONNECTIONS

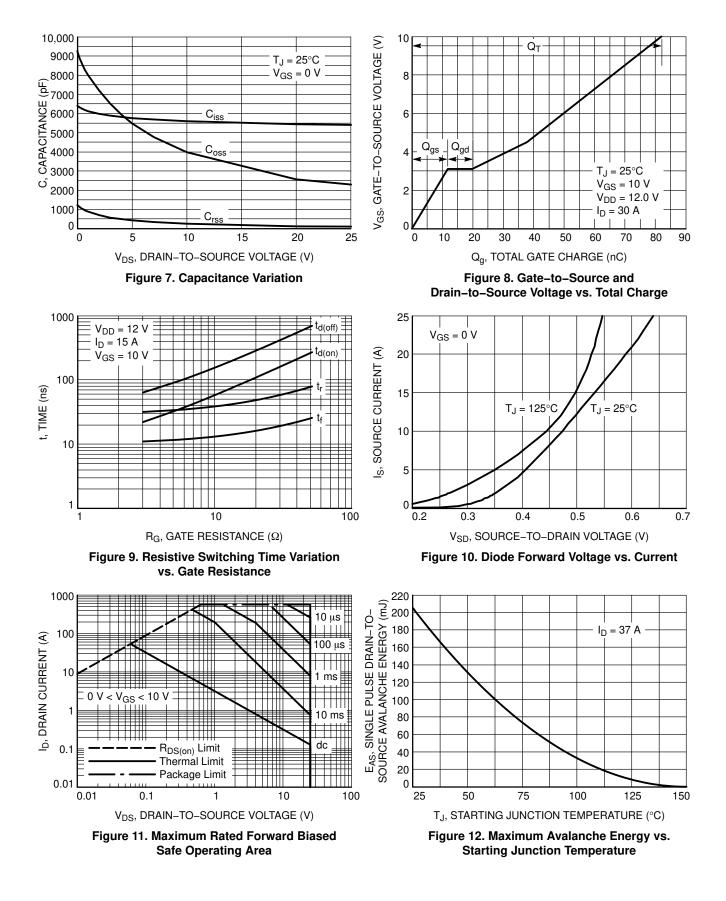
SO8-FL (5 x 6 mm)

N-CHANNEL MOSFET

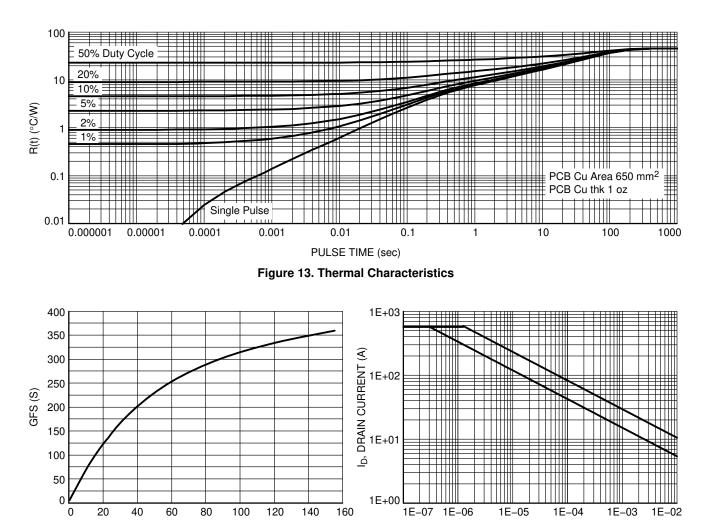
ORDERING INFORMATION


See detailed ordering, marking and shipping information on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

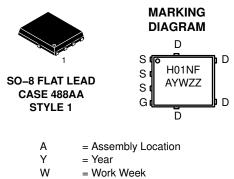

Parameter	Symbol	Test Condi	tion	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D =$	250 μΑ	25			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 10 mA referen	ce to 25°C		16		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V	$T_J = 25^{\circ}C$			500	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= +20 V			+100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D = 250 μA		1.2		2.1	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 10 mA referer	nce to 25°C		3.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		0.56	0.7	
		V _{GS} = 4.5 V	I _D = 30 A		0.79	1	mΩ
Forward Transconductance	9 FS	V _{DS} = 12 V, I _D	= 20 A		101		S
CHARGES, CAPACITANCES & GATE RESIS	TANCE			-			-
Input Capacitance	C _{ISS}				5538		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz	z, V _{DS} = 12 V		3416		pF
Reverse Transfer Capacitance	C _{RSS}				175.3		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 12 \text{ V}; I_D = 30 \text{ A}$ $V_{GS} = 10 \text{ V}, V_{DS} = 12 \text{ V}; I_D = 30 \text{ A}$			37.8		
Threshold Gate Charge	Q _{G(TH)}				2.3		nC
Gate-to-Source Charge	Q _{GS}				11.8		
Gate-to-Drain Charge	Q _{GD}				8		
Total Gate Charge	Q _{G(TOT)}				82		nC
Gate Resistance	R _G	T _A = 25°C			1.3	2	Ω
SWITCHING CHARACTERISTICS, V _{GS} = 4.5	V (Note 5)						
Turn–On Delay Time	t _{d(ON)}				16.9		- ns
Rise Time	t _r	Vcs = 4.5 V. Vpp = 12	2 V. In = 15 A.		42.3		
Turn-Off Delay Time	t _{d(OFF)}	$V_{GS} = 4.5 V, V_{DD} = 12$ $R_{G} = 3.0$	Ω		46.3		
Fall Time	t _f				30.9		
SWITCHING CHARACTERISTICS, $V_{GS} = 10$	V (Note 5)						
Turn–On Delay Time	t _{d(ON)}				10.9		
Rise Time	t _r	V_{GS} = 11.5 V, V_{DD} = 12 V, I _D = 15 A, R _G = 3.0 Ω			33.2		- ns
Turn-Off Delay Time	t _{d(OFF)}				58.3		
Fall Time	t _f				23.3		
DRAIN-SOURCE DIODE CHARACTERISTIC	S						-
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.35	0.6	
		GS = 0 t,	T _J = 125°C		0.27		V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/μs, I _S = 30 A		·	66.7		ns
Charge Time	t _a				33.1		
Discharge Time	t _b				33.6		1
Reverse Recovery Charge	Q _{RR}				90		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 5. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. 6. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

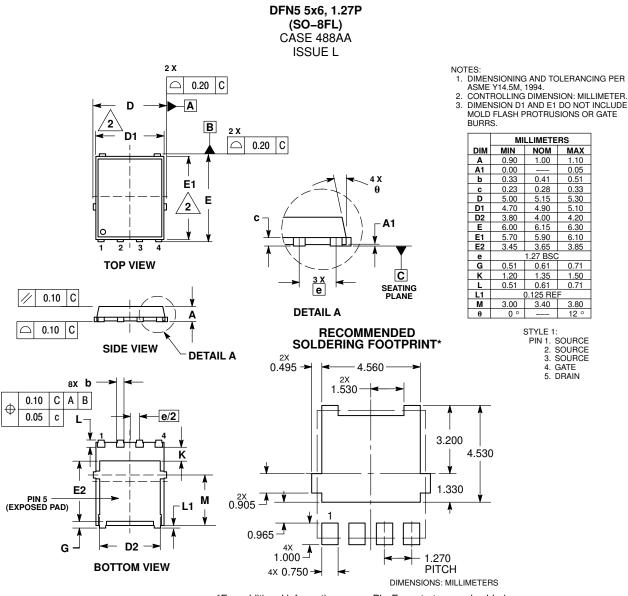
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


I_D (A) Figure 14. GFS vs. I_D

PULSE WIDTH (sec) Figure 15. Avalanche Characteristics

ORDERING INFORMATION


Device	Package	Shipping [†]
NTMFS4H01NFT1G	SO8–FL (Pb-Free)	1500 / Tape & Reel
NTMFS4H01NFT3G	SO8–FL (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ZZ = Lot Traceability

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the intervent and the intervent of the patient the patient the patient the patient the patient patient of the patient of the patient of the patient of the patient patient of the pa

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative