

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

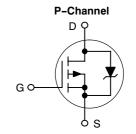
Power MOSFET -3.05 Amps, -30 Volts

P-Channel SOIC-8

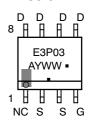
Features

- High Efficiency Components in a Single SOIC-8 Package
- High Density Power MOSFET with Low R_{DS(on)}
- Miniature SOIC-8 Surface Mount Package Saves Board Space
- Diode Exhibits High Speed with Soft Recovery
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Mounting Information for the SOIC-8 Package is Provided
- Pb-Free Package is Available

Applications


- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery-Powered Products, i.e.: Computers, Printers, PCMCIA Cards, Cellular & Cordless Telephones

ON Semiconductor®


http://onsemi.com

-3.05 AMPERES -30 VOLTS 0.085 Ω @ V_{GS} = -10 V

MARKING DIAGRAM & PIN ASSIGNMENT

E3P03 = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMS3P03R2	SOIC-8	2500/Tape & Reel
NTMS3P03R2G	SOIC-8 (Pb-Free)	2500/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-30	V
Gate-to-Source Voltage - Continuous	V _{GS}	±20	V
Thermal Resistance – Junction-to-Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Pulsed Drain Current (Note 4)	R _{0JA} P _D I _D I _D	171 0.73 -2.34 -1.87 -8.0	°C/W W A A
Thermal Resistance – Junction-to-Ambient (Note 2) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Pulsed Drain Current (Note 4)	R _{eJA} P _D I _D I _D	100 1.25 -3.05 -2.44 -12	°C/W W A A
Thermal Resistance – Junction-to-Ambient (Note 3) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ 25°C Continuous Drain Current @ 70°C Pulsed Drain Current (Note 4)	R _{0JA} PD ID ID	62.5 2.0 -3.86 -3.1 -15	°C/W W A A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T _J = 25°C (V_{DD} = -30 Vdc, V_{GS} = -4.5 Vdc, Peak I _L = -7.5 Apk, L = 5 mH, R _G = 25 Ω)	E _{AS}	140	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Minimum FR-4 or G-10 PCB, t = steady state.

- Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t = steady state.
 Mounted onto a 2" square FR-4 Board (1" sq. 2 oz Cu 0.06" thick single sided), t ≤ 10 seconds.
- 4. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Note 5)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = -250 μAdc) Temperature Coefficient (Positive)		V _{(BR)DSS}	-30 -	- -30		Vdc mV/°C
Zero Gate Voltage Drain Current (V _{DS} = -30 Vdc, V _{GS} = 0 Vdc, T _J = 25°C) (V _{DS} = -30 Vdc, V _{GS} = 0 Vdc, T _J = 125°C)		I _{DSS}	- -	- -	-1.0 -10	μAdc
Gate-Body Leakage Current (V _{GS} = -20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	-100	nAdc
Gate-Body Leakage Current (V _{GS} = +20 Vdc, V _{DS} = 0 Vdc)		I _{GSS}	-	-	100	nAdc
ON CHARACTERISTICS				1	•	
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = -250 \mu Adc)$ Temperature Coefficient (Negative)		V _{GS(th)}	-1.0 -	-1.7 3.6	-2.5 -	Vdc
Static Drain-to-Source On-State Resistance (V_{GS} = -10 Vdc, I_D = -3.05 Adc) (V_{GS} = -4.5 Vdc, I_D = -1.5 Adc)		R _{DS(on)}	- -	0.063 0.090	0.085 0.115	Ω
Forward Transconductance (V _{DS} = -15 Vdc, I _D = -3.05 Adc)			-	5.0	-	Mhos
DYNAMIC CHARACTERISTICS						
Input Capacitance		C _{iss}	-	520	750	pF
Output Capacitance	$(V_{DS} = -24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	-	170	325	
Reverse Transfer Capacitance	<u> </u>	C _{rss}	-	70	135	
SWITCHING CHARACTERISTICS	(Notes 6 & 7)					
Turn-On Delay Time		t _{d(on)}	-	12	22	ns
Rise Time	$(V_{DD} = -24 \text{ Vdc}, I_D = -3.05 \text{ Adc},$	t _r	-	16	30	
Turn-Off Delay Time	V_{GS} = -10 Vdc, R_G = 6.0 Ω)	t _{d(off)}	-	45	80	
Fall Time	7	t _f	-	45	80	
Turn-On Delay Time		t _{d(on)}	-	16	-	ns
Rise Time	$(V_{DD} = -24 \text{ Vdc}, I_D = -1.5 \text{ Adc},$	t _r	-	42	-	- - -
Turn-Off Delay Time	$V_{GS} = -4.5 \text{ Vdc},$ $R_G = 6.0 \Omega)$	t _{d(off)}	-	32	-	
Fall Time		t _f	-	35	-	
Total Gate Charge	04)/4-	Q _{tot}	-	16	25	nC
Gate-Source Charge	$V_{DS} = -24 \text{ Vdc},$ $V_{GS} = -10 \text{ Vdc},$	Q _{gs}	_	2.0	-	
Gate-Drain Charge	I _D = -3.05 Adc)	Q _{gd}	-	4.5	-	
BODY-DRAIN DIODE RATINGS (N	lote 6)			-I		1
Diode Forward On-Voltage	$(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ V})$ $(I_S = -3.05 \text{ Adc}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C})$	V _{SD}	-	-0.96 -0.78	-1.25 -	Vdc
Reverse Recovery Time	(I _S = -3.05 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs)	t _{rr}	_	34	-	ns
		t _a	-	18	-	
		t _b	-	16	-]
Reverse Recovery Stored Charge		Q _{RR}	_	0.03	-	μС

Handling precautions to protect against electrostatic discharge is mandatory.
 Indicates Pulse Test: Pulse Width = 300 μs max, Duty Cycle = 2%.
 Switching characteristics are independent of operating junction temperature.

TYPICAL ELECTRICAL CHARACTERISTICS

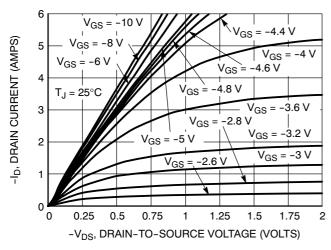
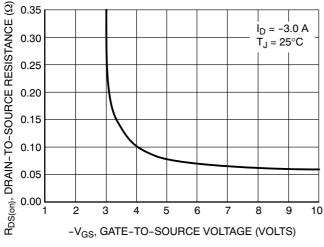



Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

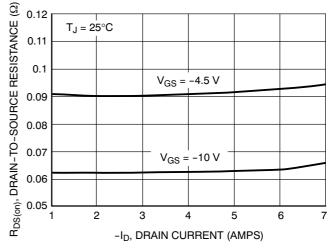


Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

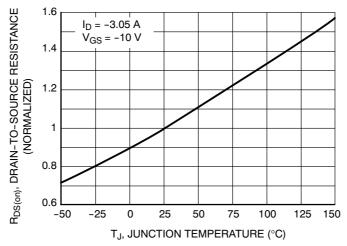
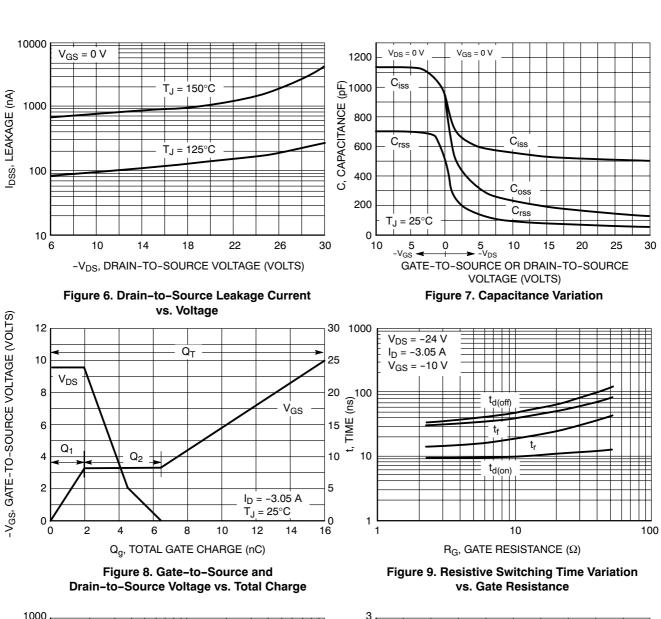



Figure 5. On Resistance Variation with Temperature

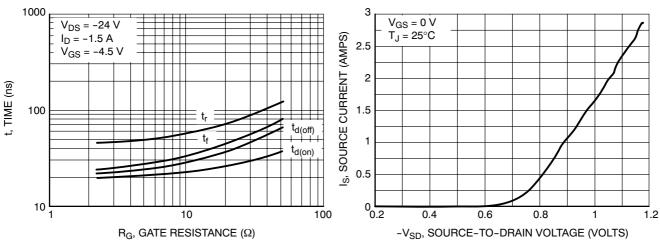
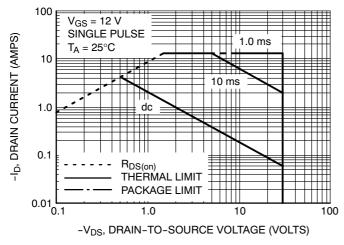



Figure 10. Resistive Switching Time Variation vs. Gate Resistance

Figure 11. Diode Forward Voltage vs. Current

 $\begin{array}{c|c} I_S & & \\ \hline & t_{rr} \\ \hline & t_a & t_{b} \\ \hline & 0.25 \, I_S \\ \hline & I_S \\ \end{array}$

Figure 12. Maximum Rated Forward Biased Safe Operating Area

Figure 13. Diode Reverse Recovery Waveform

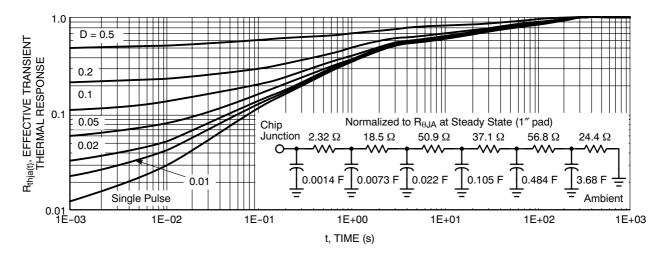
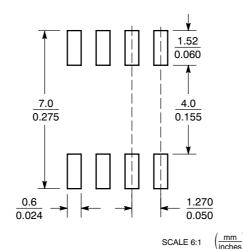



Figure 14. FET Thermal Response

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AH** -X-В 0.25 (0.010) M Y M -Y-G C N X 45 SEATING -Z-0.10 (0.004) \oplus 0.25 (0.010) M Z Y S XS

SOLDERING FOOTPRINT*

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*For additional information on our Pb-Free strategy and soldering

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
Α	4.80	5.00	0.189	0.197		
В	3.80	4.00	0.150	0.157		
С	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27	1.27 BSC		0.050 BSC		
Н	0.10	0.25	0.004	0.010		
J	0.19	0.25	0.007	0.010		
K	0.40	1.27	0.016	0.050		
М	0 °	8 °	0 °	8 °		
N	0.25	0.50	0.010	0.020		
S	5.80	6.20	0.228	0.244		

STYLE 13:

- PIN 1. N.C.
 - 2. SOURCE 3. SOURCE
 - 4.
 - GATE DRAIN 5.
 - DRAIN 6.
 - DRAIN
 - 8. DRAIN

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered traderlands of semiconductor. Components industries, ICC (SCILLC) solution (serves the right to make so characteristics) are to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifically disclaims can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative