: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NTMSD3P102R2

FETKY ${ }^{\text {™ }}$

P-Channel Enhancement-Mode

 Power MOSFET and Schottky Diode Dual SO-8 Package
Features

- High Efficiency Components in a Single SO-8 Package
- High Density Power MOSFET with Low $\mathrm{R}_{\mathrm{DS}(o n)}$, Schottky Diode with Low V_{F}
- Independent Pin-Outs for MOSFET and Schottky Die Allowing for Flexibility in Application Use
- Less Component Placement for Board Space Savings
- SO-8 Surface Mount Package,

Mounting Information for SO-8 Package Provided

- Pb-Free Packages are Available

Applications

- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery-Powered Products,
i.e.: Computers, Printers, PCMCIA Cards, Cellular and Cordless Telephones MOSFET MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted).

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	$\mathrm{V}_{\text {DSS }}$	-20	V
Gate-to-Source Voltage - Continuous	V_{GS}	± 20	V
Thermal Resistance -Junction-to-Ambient (Note 1) Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Continuous Drain Current @ $T_{A}=25^{\circ} \mathrm{C}$ Continuous Drain Current @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ Pulsed Drain Current (Note 4)	$\begin{gathered} \mathrm{R}_{\theta J \mathrm{JA}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{DM}} \end{gathered}$	$\begin{aligned} & 171 \\ & 0.73 \\ & -2.34 \\ & -1.87 \\ & -8.0 \end{aligned}$	$\begin{gathered} \circ \\ \\ \text { O/W } \\ \text { W } \\ \text { A } \\ \text { A } \\ \text { A } \end{gathered}$
Thermal Resistance -Junction-to-Ambient (Note 2) Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Continuous Drain Current @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Continuous Drain Current @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ Pulsed Drain Current (Note 4)	$\begin{gathered} \mathrm{R}_{\text {PJA }} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{DM}} \end{gathered}$	$\begin{aligned} & 100 \\ & 1.25 \\ & -3.05 \\ & -2.44 \\ & -12 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ \mathrm{~A} \\ \mathrm{~A} \\ \mathrm{~A} \end{gathered}$
Thermal Resistance -Junction-to-Ambient (Note 3) Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Continuous Drain Current @ $T_{A}=25^{\circ} \mathrm{C}$ Continuous Drain Current @ $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$ Pulsed Drain Current (Note 4)	$\begin{gathered} \mathrm{R}_{\mathrm{BJA}} \\ \mathrm{P}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{D}} \\ \mathrm{I}_{\mathrm{DM}} \end{gathered}$	$\begin{gathered} 62.5 \\ 2.0 \\ -3.86 \\ -3.10 \\ -15 \end{gathered}$	$\begin{gathered} \circ \\ \text { º/W } \\ \text { W } \\ \text { A } \\ \text { A } \\ \text { A } \end{gathered}$
Operating and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	$\begin{aligned} & -55 \text { to } \\ & +150 \end{aligned}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { Single Pulse Drain-to-Source Avalanche } \\ & \text { Energy - Starting } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{DD}}=-20 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=-4.5 \mathrm{Vdc}, \\ & \text { Peak } \left.\mathrm{I}_{\mathrm{L}}=-7.5 \mathrm{Apk}, \mathrm{~L}=5 \mathrm{mH}, \mathrm{R}_{\mathrm{G}}=25 \Omega\right) \end{aligned}$	$\mathrm{E}_{\text {AS }}$	140	mJ
Maximum Lead Temperature for Soldering Purposes, $1 / 8^{\prime \prime}$ from case for 10 seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Minimum FR-4 or G-10 PCB, Steady State.
2. Mounted onto a $2^{\prime \prime}$ square FR-4 Board (1 in sq, 2 oz Cu 0.06 " thick single-sided), Steady State.
3. Mounted onto a $2^{\prime \prime}$ square FR-4 Board (1 in sq, 2 oz Cu 0.06 " thick single sided), $\mathrm{t} \leq 10$ seconds.
4. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $=2 \%$.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

(Note: Microdot may be in either location)
ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NTMSD3P102R2	SO-8	2500/Tape \& Reel
NTMSD3P102R2G	SO-8 (Pb-Free)	2500/Tape \& Reel
NTMSD3P102R2SG	SO-8 (Pb-Free)	2500/Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

SCHOTTKY MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage DC Blocking Voltage	$\mathrm{V}_{\text {RRM }}$ V_{R}	20	V
Thermal Resistance - Junction-to-Ambient (Note 5)	$\mathrm{R}_{\theta J \mathrm{~A}}$	204	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance - Junction-to-Ambient (Note 6)	$\mathrm{R}_{\theta J \mathrm{~A}}$	122	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance - Junction-to-Ambient (Note 7)	$\mathrm{R}_{\theta \mathrm{JJA}}$	83	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Average Forward Current (Note 7) (Rated $\left.\mathrm{V}_{\mathrm{R}}, \mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}\right)$	I_{O}	1.0	A
Peak Repetitive Forward Current (Note 7) (Rated V_{R}, Square Wave, 20 kHz, $\left.\mathrm{T}_{\mathrm{A}}=105^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {FRM }}$	2.0	A
Non-Repetitive Peak Surge Current (Note 7) (Surge Applied at Rated Load Conditions, Half-Wave, Single Phase, 60 Hz$)$	$\mathrm{I}_{\text {FSM }}$	20	A

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
5. Minimum FR-4 or G-10 PCB, Steady State.
6. Mounted onto a 2" square FR-4 Board (1 in sq, 2 oz Cu 0.06 " thick single-sided), Steady State.
7. Mounted onto a $2^{\prime \prime}$ square FR-4 Board ($1 \mathrm{in} \mathrm{sq}, 2$ oz Cu $0.06^{\prime \prime}$ thick single sided), $\mathrm{t} \leq 10$ seconds.

SCHOTTKY ELECTRICAL CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (Note 8)

Characteristic		Symbol	Value		Unit
Maximum Instantaneous Forward Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{AdC} \end{aligned}$	V_{F}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	Volts
Maximum Instantaneous Forward Voltage	$\begin{aligned} & I_{F}=1.0 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{F}}=2.0 \mathrm{Adc} \end{aligned}$	V_{F}	$\begin{aligned} & 0.47 \\ & 0.58 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.53 \end{aligned}$	Volts
Maximum Instantaneous Reverse Current	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{Vdc}$	I_{R}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	mA
			0.05	10	
Maximum Voltage Rate of Change	$\mathrm{V}_{\mathrm{R}}=20 \mathrm{Vdc}$	dV/dt	10,000		V/us

8. Indicates Pulse Test: Pulse Width $=300 \mu$ s max, Duty Cycle $=2 \%$.

NTMSD3P102R2

MOSFET ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Note 9)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
$\begin{aligned} & \text { Drain-to-Source Breakdown Voltage } \\ & \left(\mathrm{V}_{\mathrm{GS}}=0 \text { Vdc, } \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{Adc}\right) \\ & \text { Temperature Coefficient (Positive) } \end{aligned}$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	-20	-30	-	$\begin{gathered} \mathrm{Vdc} \\ \mathrm{mV} /{ }^{\circ} \mathrm{C} \end{gathered}$
Zero Gate Voltage Drain Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	IDSS	-	-	$\begin{aligned} & -1.0 \\ & -25 \end{aligned}$	$\mu \mathrm{Adc}$
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=-20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	$I_{G S S}$	-	-	-100	nAdc
Gate-Body Leakage Current ($\mathrm{V}_{\mathrm{GS}}=+20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{Vdc}$)	$I_{\text {GSS }}$	-	-	100	nAdc

ON CHARACTERISTICS

Gate Threshold Voltage $\begin{gathered} \left(\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=-250 \mu \mathrm{Adc}\right) \\ \text { Temperature Coefficient (Negative) } \end{gathered}$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	-1.0	$\begin{gathered} -1.7 \\ 3.6 \end{gathered}$	-2.5	Vdc
Static Drain-to-Source On-State Resistance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-3.05 \mathrm{Adc}\right) \\ & \left(\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{Adc}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	-	$\begin{aligned} & 0.063 \\ & 0.090 \end{aligned}$	$\begin{aligned} & 0.085 \\ & 0.125 \end{aligned}$	Ω
Forward Transconductance $\left(V_{D S}=-15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-3.05 \mathrm{Adc}\right)$	gfs	-	5.0	-	Mhos

DYNAMIC CHARACTERISTICS

Input Capacitance	$\begin{gathered} \left(V_{D S}=-16 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ \mathrm{f}=1.0 \mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{\text {iss }}$	-	518	750	pF
Output Capacitance		$\mathrm{C}_{\text {oss }}$	-	190	350	
Reverse Transfer Capacitance		$\mathrm{Cr}_{\text {rss }}$	-	70	135	

SWITCHING CHARACTERISTICS (Notes 10 \& 11)

Turn-On Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DD}}=-20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-3.05 \mathrm{Adc},\right. \\ \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{Vdc}, \\ \left.\mathrm{R}_{\mathrm{G}}=6.0 \Omega\right) \end{gathered}$	$\mathrm{t}_{\mathrm{d}(\mathrm{on})}$	-	12	22	ns
Rise Time		t_{r}	-	16	30	
Turn-Off Delay Time		$\mathrm{t}_{\text {d(off) }}$	-	45	80	
Fall Time		t_{f}	-	45	80	
Turn-On Delay Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{DD}}=-20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=-1.5 \mathrm{Adc},\right. \\ \mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{Vdc}, \\ \left.\mathrm{R}_{\mathrm{G}}=6.0 \Omega\right) \end{gathered}$	$\mathrm{t}_{\mathrm{d} \text { (on) }}$	-	16	-	ns
Rise Time		t_{r}	-	42	-	
Turn-Off Delay Time		$\mathrm{t}_{\text {d(off) }}$	-	32	-	
Fall Time		t_{f}	-	35	-	
Total Gate Charge	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{DS}}=-20 \mathrm{Vdc},\right. \\ & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{Vdc}, \\ & \left.\mathrm{I}_{\mathrm{D}}=-3.05 \mathrm{Adc}\right) \end{aligned}$	$\mathrm{Q}_{\text {tot }}$	-	16	25	nC
Gate-Source Charge		Q_{gs}	-	2.0	-	
Gate-Drain Charge		Q_{gd}	-	4.5	-	

BODY-DRAIN DIODE RATINGS (Note 10)

Diode Forward On-Voltage	$\begin{gathered} \left(\mathrm{I}_{\mathrm{S}}=-3.05 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right) \\ \left(\mathrm{IS}=-3.05 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}\right) \end{gathered}$	$\mathrm{V}_{\text {SD }}$	-	$\begin{aligned} & -0.96 \\ & -0.78 \end{aligned}$	-1.25	Vdc
Reverse Recovery Time	$\begin{gathered} \left(\mathrm{I}_{\mathrm{S}}=-3.05 \mathrm{Adc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc},\right. \\ \mathrm{dl} / \mathrm{dt}=100 \mathrm{~A} / \mathrm{\mu s}) \end{gathered}$	t_{rr}	-	34	-	ns
		t_{a}	-	18	-	
		t_{b}	-	16	-	
Reverse Recovery Stored Charge		$\mathrm{Q}_{\text {RR }}$	-	0.03	-	$\mu \mathrm{C}$

9. Handling precautions to protect against electrostatic discharge are mandatory.
10. Indicates Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$ max, Duty Cycle $=2 \%$.
11. Switching characteristics are independent of operating junction temperature.

NTMSD3P102R2

TYPICAL MOSFET ELECTRICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 2. Transfer Characteristics

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

Figure 5. On Resistance Variation with Temperature

NTMSD3P102R2

Figure 6. Drain-to-Source Leakage Current
vs. Voltage

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

R_{G}, GATE RESISTANCE (Ω)
Figure 10. Resistive Switching Time Variation vs. Gate Resistance

Figure 7. Capacitance Variation

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

$-\mathrm{V}_{\text {SD }}$, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 11. Diode Forward Voltage vs. Current

NTMSD3P102R2

Figure 12. Diode Reverse Recovery Waveform

Figure 13. FET Thermal Response

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

NTMSD3P102R2

Figure 16. Typical Reverse Current

Figure 18. Typical Capacitance

Figure 19. Current Derating

NTMSD3P102R2

TYPICAL SCHOTTKY ELECTRICAL CHARACTERISTICS

Figure 20. Forward Power Dissipation

Figure 21. Schottky Thermal Response

NTMSD3P102R2

PACKAGE DIMENSIONS

FETKY is a registered trademark of International Rectifier Corporation.
ON Semiconductor and 0 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

