

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET

-60 V, -12 A, Single P-Channel, TO-220

Features

- Low R_{DS(on)}
- Rugged Performance
- Fast Switching
- These are Pb-Free Devices*

Applications

- Industrial
- Automotive
- Power Supplies

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	-60	٧
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain	Steady	T _C = 25°C	I _D	-12	Α
Current (Note 1)	State	T _C = 85°C		-9.0	
Power Dissipation (Note 1)		T _C = 25°C	P _D	62.5	W
Continuous Drain	Steady	T _A = 25°C	I _D	-2.4	Α
Current (Note 1)	State	T _A = 85°C		-1.8	
Power Dissipation (Note 1)		T _A = 25°C	P _D	2.4	W
Pulsed Drain Current	t _p =	- 10 μs	I _{DM}	-42	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 175	°C
Source Current (Body Diode)			I _S	-12	Α
Single Pulse Drain–to–Source Avalanche Energy (V_{DD} = -30 V, V_{G} = -10 V, I_{PK} = -12 A, L = 3.0 mH, R_{G} = 3.0 Ω)			EAS	216	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

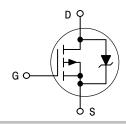
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case	$R_{ heta JC}$	2.4	°C/W
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta,JA}$	62.5	

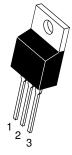
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. When surface mounted to an FR4 board using 1 in pad size

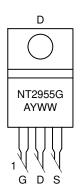
(Cu. area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®


www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D MAX		
-60 V	156 mΩ @ –10 V	–12 A		


P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

TO-220 CASE 221A STYLE 5

= Assembly Location

= Year WW = Work Week = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping		
NTP2955G	TO-220 (Pb-Free)	50 Units / Rail		

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_J=25°C unless otherwise stated)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•		•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$		-60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				67		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V},$ $V_{DS} = -48 \text{ V}$	T _J = 25°C			-1.0	μΑ
		$V_{DS} = -48 \text{ V}$	T _J = 125°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{G}$	_{iS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 2)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D$	= -250 μA	-2.0		-4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				56		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -10 \text{ V},$	I _D = -12 A		156	196	mΩ
Forward Transconductance	9FS	$V_{DS} = -60 \text{ V},$	I _D = -12 A		6.0		S
CHARGES AND CAPACITANCES	•				1		1
Input Capacitance	C _{ISS}				507	700	pF
Output Capacitance	C _{OSS}	$V_{GS} = 0 \text{ V, f} = V_{DS} = -1$	1.0 MHz, 25 V		150	250	
Reverse Transfer Capacitance	C _{RSS}	- 03			48	98	
Total Gate Charge	Q _{G(TOT)}				14		nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -10 \text{ V}, \text{ V}$	ns = -48 V,		1.6	2.5	
Gate-to-Source Charge	Q_{GS}	$I_{D} = -12 \text{ A}$			3.4		
Gate-to-Drain Charge	Q_{GD}				6.2		
SWITCHING CHARACTERISTICS (No	ote 3)						
Turn-On Delay Time	t _{d(on)}				10	20	ns
Rise Time	t _r	$V_{GS} = -10 \text{ V}, \text{ V}$	_{DD} = -30 V,		41	80	
Turn-Off Delay Time	t _{d(off)}	$I_D = -12 \text{ A}, R_G = 9.1 \Omega$			27	47	
Fall Time	t _f				45	85	
DRAIN-SOURCE DIODE CHARACTE	RISTICS		•		•		•
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$,	T _J = 25°C		-1.6	-2.0	V
	I _S = -12		T _J = 125°C		-1.36		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dI}_{S}/\text{dt} = 100 \text{ A}/\mu\text{s,}$ $I_{S} = -12 \text{ A}$			53		
Charge Time	ta				42		ns
Discharge Time	t _b				12		
Reverse Recovery Charge	Q _{RR}				126		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

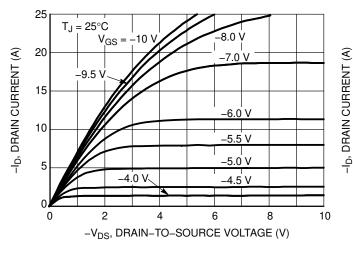


Figure 1. On-Region Characteristics

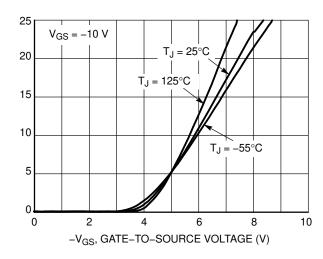


Figure 2. Transfer Characteristics

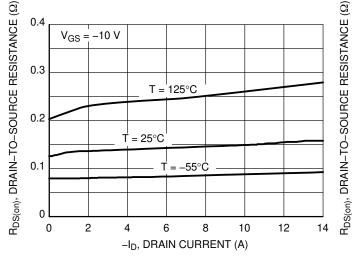


Figure 3. On–Resistance versus Drain Current and Temperature

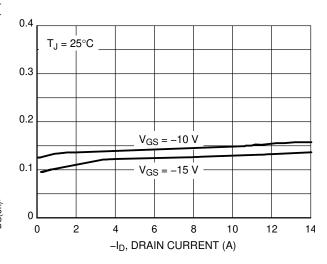


Figure 4. On-Resistance versus Drain Current and Gate Voltage

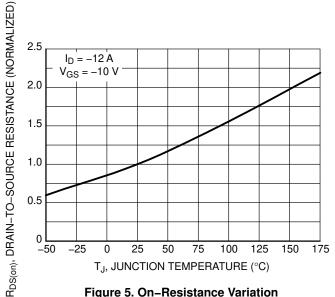


Figure 5. On–Resistance Variation with Temperature

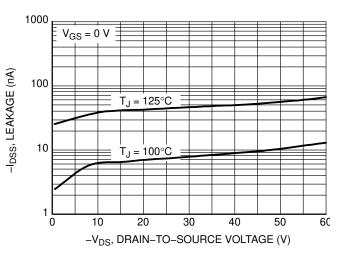
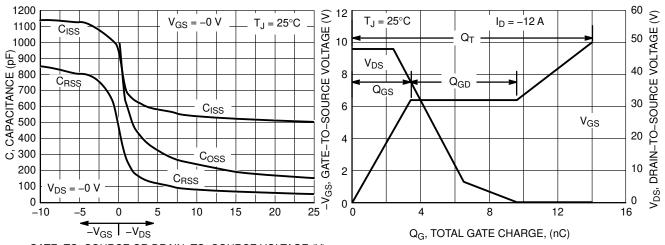



Figure 6. Drain-to-Source Leakage versus Voltage

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

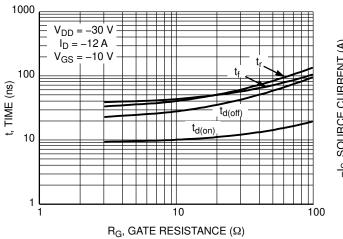


Figure 9. Resistive Switching Time Variation versus Gate Resistance

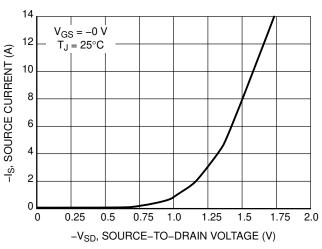


Figure 10. Diode Forward Voltage versus Current

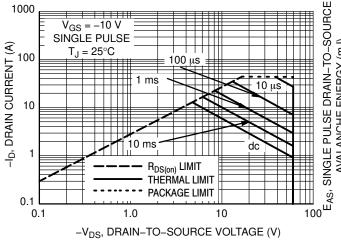


Figure 11. Maximum Rated Forward Biased Safe Operating Area

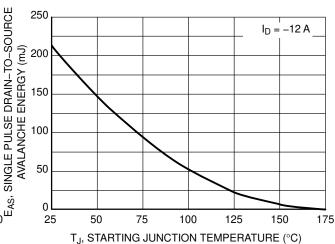
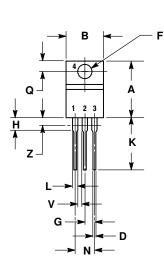
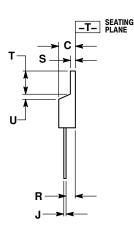




Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AH

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 V14 5M 1982
- Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
C	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
7	0.014	0.024	0.36	0.61
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
5	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 5:

PIN 1. GATE

- . DRAIN
- SOURCE
 DRAIN

ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

anada **Japa** Pho

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative