imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET 65 A, 24 V N-Channel TO-220, D²PAK

Features

- Planar HD3e Process for Fast Switching Performance
- Low R_{DSon} to Minimize Conduction Loss
- Low C_{iss} to Minimize Driver Loss
- Low Gate Charge

Drain Current -

• Pb–Free Packages are Available*

Gate-to-Source Voltage - Continuous

Total Power Dissipation @ $T_C = 25^{\circ}C$

Continuous @ T_C = 25°C, Chip

Single Pulse ($t_p = 10 \ \mu s$)

Junction-to-Ambient (Note 1)

Junction-to-Ambient (Note 2)

Total Power Dissipation @ T_A = 25°C

Drain Current – Continuous @ T_A = 25°C

Single Pulse Drain-to-Source Avalanche

Energy – Starting $T_J = 25^{\circ}C$ ($V_{DD} = 50 V_{dc}, V_{GS} = 10 V_{dc}, I_L = 11 A_{pk}$,

Maximum Lead Temperature for Soldering

Purposes, 1/8" from Case for 10 Seconds

Operating and Storage Temperature Range

Total Power Dissipation @ T_A = 25°C

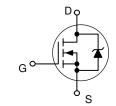
Drain Current – Continuous @ T_A = 25°C

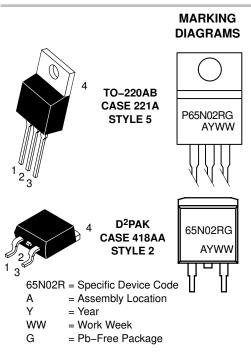
Thermal Resistance -

Thermal Resistance -

 $L = 1 \text{ mH}, R_G = 25 \Omega$

Continuous @ T_C =25°C, Limited by Package


Thermal Resistance - Junction-to-Case



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
24 V	8.4 mΩ @ 10 V	65 A

PIN ASSIGNMENT

PIN	FUNCTION
1	Gate
2	Drain
3	Source
4	Drain

reliability may be affected. 1. When surface mounted to an FR4 board using 1 in. pad size, (Cu Area 1.127 in²).

 When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in²).

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are

exceeded, device functional operation is not implied, damage may occur and

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

Parameter Symbol Drain-to-Source Voltage V_{DSS}

MAXIMUM RATINGS (T_J = 25°C Unless otherwise specified)

Semiconductor Components Industries, LLC, 2005
 May, 2005 – Rev. 6

Value

25

±20

2.0

62.5

65

58

160

67

1.86

10

120

1.04

7.6

-55 to

150

60

260

V_{GS}

 $\mathsf{R}_{\theta\mathsf{JC}}$

 P_D

 I_D

 I_D

 I_{DM}

 $R_{\theta JA}$

PD

 I_D

 $R_{\theta JA}$

PD

 I_D

 T_J and

T_{stg}

 E_{AS}

 T_L

Unit V_{dc}

V_{dc}

°C/W

w

Α

А

А

°C/W

W

А

°C/W

W

А

°C

mJ

°C

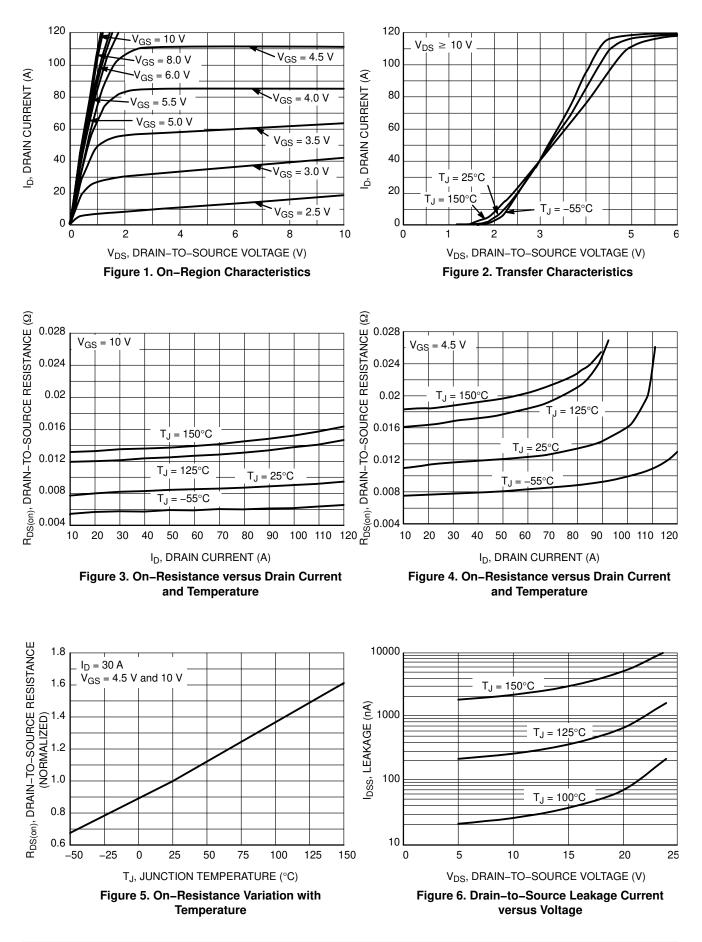
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

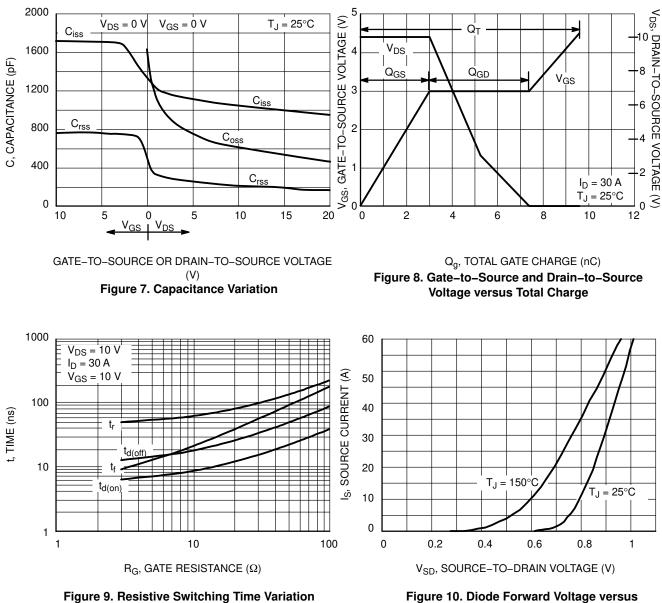
ELECTRICAL CHARACTERISTICS (T_J = 25°C Unless otherwise specified)

	Characteristics	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•		•	•
$\begin{array}{l} \text{Drain-to-Source Breakdowr}\\ (\text{V}_{GS}=0 \text{ V}_{dc}, \text{ I}_{D}=250 \ \mu\text{A}\\ Temperature Coefficient (Post$	Ndc)	V _{(BR)DSS}	24 -	27.5 25.5		V _{dc} mV/°C
Zero Gate Voltage Drain Cur $ \begin{pmatrix} V_{DS} = 20 \ V_{dc}, \ V_{GS} = 0 \ V \\ (V_{DS} = 20 \ V_{dc}, \ V_{GS} = 0 \ V \\ \end{pmatrix} $	(dc)	I _{DSS}			1.5 10	μA _{dc}
$\begin{array}{l} Gate-Body \ Leakage \ Current \\ (V_{GS}=\pm 20 \ V_{dc}, \ V_{DS}=0 \end{array}$		I _{GSS}	_	_	±100	nA _{dc}
ON CHARACTERISTICS (N	ote 3)					
Gate Threshold Voltage (Not $(V_{DS} = V_{GS}, I_D = 250 \ \mu A_c$ Threshold Temperature Coef	ic)	V _{GS(th)}	1.0	1.5 4.1	2.0 _	V _{dc} mV/°C
$\begin{array}{l} \mbox{Static Drain-to-Source On-} \\ (V_{GS} = 4.5 \ V_{dc}, \ I_D = 15 \ A \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 20 \ A_c \\ (V_{GS} = 10 \ V_{dc}, \ I_D = 30 \ A_c \end{array}$	dc)	R _{DS(on)}		11.2 8.4 8.2	12.5 10.5 -	mΩ
Forward Transconductance ($V_{DS} = 10 V_{dc}$, $I_D = 15 A_c$		9fs	-	27	_	Mhos
DYNAMIC CHARACTERIST	ICS					
Input Capacitance		C _{iss}	-	948	1330	pF
Output Capacitance	$(V_{DS} = 20 V_{dc}, V_{GS} = 0 V, f = 1 MHz)$	C _{oss}	-	456	640	1
Transfer Capacitance		C _{rss} –	-	160	225]
SWITCHING CHARACTERI	STICS (Note 4)					
Turn–On Delay Time		t _{d(on)}	-	7.0	-	ns
Rise Time	(V _{GS} = 10 V _{dc} , V _{DD} = 10 V _{dc} ,	t _r	-	53	-	1
Turn-Off Delay Time	$I_D = 30 A_{dc}^{ab}, R_G = 3 \Omega$	v _{dc} ,	1			
Fall Time		tf	-	10	-	1
Gate Charge		QT	-	9.5	-	nC
	$(V_{GS} = 4.5 V_{dc}, I_D = 30 A_{dc}, V_{DS} = 10 V_{dc})$ (Note 3)	Q ₁	-	3.0	-	1
		Q ₂	-	4.4	-	
SOURCE-DRAIN DIODE CH	HARACTERISTICS					
Forward On–Voltage		V _{SD}	- - -	0.88 1.10 0.80	1.2 - -	V _{dc}
Reverse Recovery Time		t _{rr}	-	29.1	-	ns
	(L 20 A X 0 X	ta	-	13.6	-	1
	$(I_{S} = 30 A_{dc}, V_{GS} = 0 V_{dc}, dI_{S}/dt = 100 A/\mu s)$ (Note 3)	t _b	-	15.5	-	1
		h	-	1	ł	+

Reverse Recovery Stored Charge

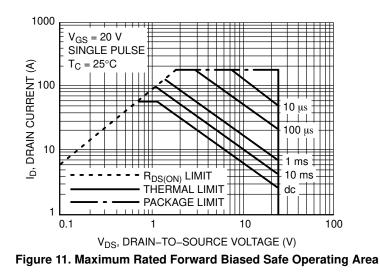
Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


Q_{RR}


0.02

_

μC


_

versus Gate Resistance

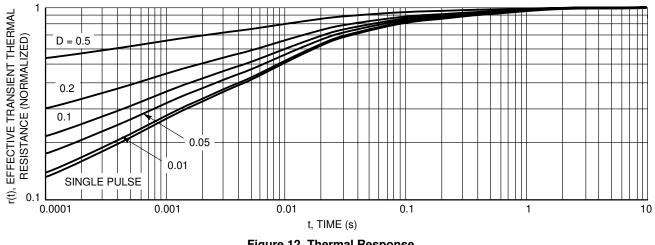
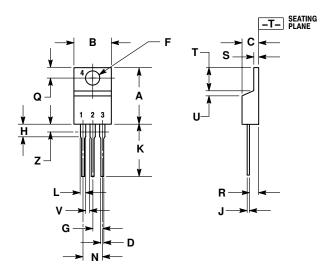


Figure 12. Thermal Response


ORDERING INFORMATION

Device	Package	Shipping [†]
NTB65N02R	D ² PAK	50 Units / Rail
NTB65N02RG	D ² PAK (Pb–Free)	50 Units / Rail
NTB65N02RT4	D ² PAK	800 / Tape & Reel
NTB65N02RT4G	D ² PAK (Pb–Free)	800 / Tape & Reel
NTP65N02R	TO-220AB	50 Units / Rail
NTP65N02RG	TO-220AB (Pb-Free)	50 Units / Rail

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 **ISSUE AA**

NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
υ	0.000	0.050	0.00	1.27
۷	0.045		1.15	
Ζ		0.080		2.04

STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

PACKAGE DIMENSIONS

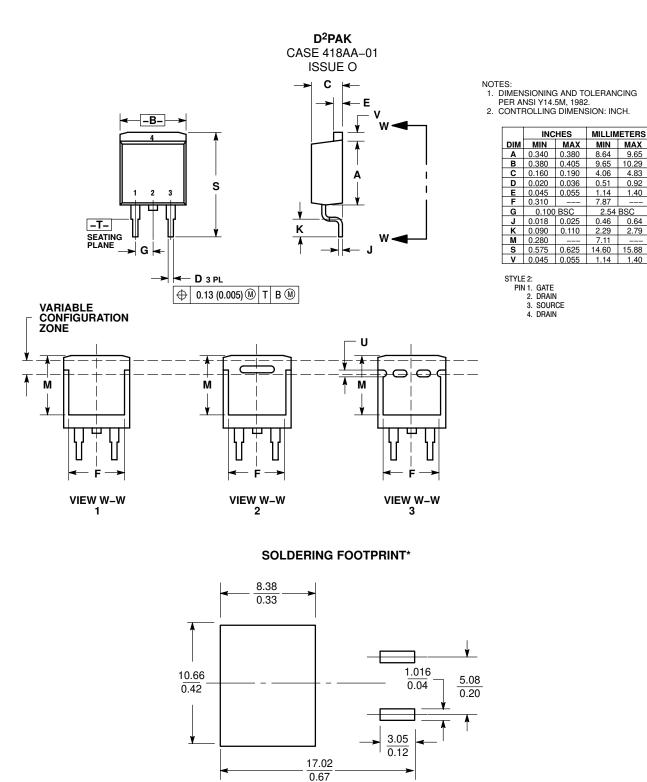
MILLIMETERS

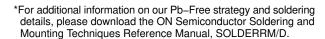
MIN MAX

9.65 10.29 4.06 4.83

0.51 0.92

1.14 1.40


2.54 BSC 0.46 0.64


1.14 1.40

9.65

8.64

7.87

 $\left(\frac{\text{mm}}{\text{inches}}\right)$

SCALE 3:1

http://onsemi.com 7

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications in the body or other application in which the BSCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use patents that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.