

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Small Signal MOSFET

Complementary 20 V, 540 mA / -430 mA, with ESD protection, SOT-563 package.

Features

- Leading Trench Technology for Low RDS(on) Performance
- High Efficiency System Performance
- Low Threshold Voltage
- ESD Protected Gate
- Small Footprint 1.6 x 1.6 mm
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

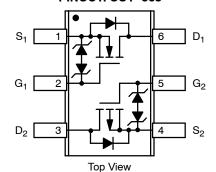
- DC-DC Conversion Circuits
- Load/Power Switching with Level Shift
- Single or Dual Cell Li-Ion Battery Operated Systems
- High Speed Circuits
- Cell Phones, MP3s, Digital Cameras, and PDAs

MAXIMUM RATINGS (T_J = 25°C unless otherwise specified)

Para	Symbol	Value	Unit			
	-					
Drain-to-Source Volta	V _{DSS}	20	V			
Gate-to-Source Voltag	je		V_{GS}	±6	V	
N-Channel Continu- ous Drain Current	Steady	$T_A = 25^{\circ}C$		540		
(Note 1)	State	$T_A = 85^{\circ}C$		390		
	t ≤ 5 s	$T_A = 25^{\circ}C$	l_	570	mA	
P-Channel Continu-	Steady	$T_A = 25^{\circ}C$	l _D	-430	IIIA	
ous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		-310		
	$t \le 5 \text{ s}$ $T_A = 25^{\circ}\text{C}$					
Power Dissipation	Steady		P _D	250	mW	
(Note 1)	State	$T_A = 25^{\circ}C$				
	t ≤ 5 s		280			
Pulsed Drain Current	N-Channel	+ 10		1500	mA	
	P-Channel	t _p = 10 μs	I _{DM}	-750	IIIA	
Operating Junction and	_T _J ,	-55 to	°C			
	T _{STG}	150				
Source Current (Body I	IS	350	mA			
Lead Temperature for S (1/8" from case for	TL	260	°C			

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq [1 oz] including traces).



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max (Note 1)
N OL I	0.4 Ω @ 4.5 V	
N-Channel 20 V	0.5 Ω @ 2.5 V	540 mA
20 •	0.7 Ω @ 1.8 V	
2	0.5 Ω @ -4.5 V	
P-Channel -20 V	0.6 Ω @ -2.5 V	–430 mA
	1.0 Ω @ -1.8 V	

PINOUT: SOT-563

6 1

MARKING DIAGRAM

SOT-563-6 CASE 463A

TW = Specific Device Code

M = Date Code ■ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTZD3155CT1G	SOT-563	4000 / Tape & Reel
NTZD3155CT1H	(Pb-Free)	14000 / Tapo a ricor
NTZD3155CT2G	— (Di. F)	4000 / Tape & Reel
NTZD3155CT2H		4000 / Tape & Tieer
NTZD3155CT5G	SOT-563	8000 / Tape & Reel
NTZD3155CT5H	(Pb-Free)	a sooo , tape a ricer

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Thermal Resistance Ratings

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	500	°C/W
Junction-to-Ambient - t = 5 s (Note 2)		447	

^{2.} Surface mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	N/P	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•				•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	V _{GS} = 0 V	I _D = 250 μA	20			V
		Р	1	I _D = -250 μA	-20			
Drain-to-Source Breakdown Voltage Temperature Coefficient	V(BR)DSS/TJ					18		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			1.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} = -16 V	1			-1.0	1
		N	V _{GS} = 0 V, V _{DS} = 16 V	T _J = 125°C			2.0	μΑ
		Р	V _{GS} = 0 V, V _{DS} = - 16V	1			-5.0	1
Gate-to-Source Leakage Current	I _{GSS}	Р	V _{DS} = 0 V, V _{GS} =	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4.5 \text{ V}$			±2.0	μΑ
		N					±5.0	1
ON CHARACTERISTICS (Note 3)								
Gate Threshold Voltage	V _{GS(TH)}	N	$V_{GS} = V_{DS}$	I _D = 250 μA	0.45		1.0	V
		Р		I _D = -250 μA	-0.45		-1.0	
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J					-1.9		-mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	N	$V_{GS} = -4.5V$, $I_D = -430$ mA $V_{GS} = 2.5$ V, $I_D = 500$ mA $V_{GS} = -2.5V$, $I_D = -300$ mA			0.4	0.55	
		Р				0.5	0.9	Ω
		N				0.5	0.7	
		Р				0.6	1.2	
		N				0.7	0.9	
		Р				1.0	2.0	1
Forward Transconductance	9 _{FS}	N	N V _{DS} = 10 V, I _D = 540 mA			1.0		0
		Р	V _{DS} = -10 V, I _D = -	-430 mA		1.0		S
CHARGES, CAPACITANCES AND GA	ATE RESISTAN	CE						
Input Capacitance	C _{ISS}					80	150	
Output Capacitance	C _{OSS}	N	$f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$ $V_{DS} = 16 \text{ V}$			13	25	1
Reverse Transfer Capacitance	C _{RSS}	1				10	20] _
Input Capacitance	C _{ISS}					105	175	pF
Output Capacitance	C _{OSS}	Р	$f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$ $V_{DS} = -16 \text{ V}$			15	30	1
Reverse Transfer Capacitance	C _{RSS}	1				10	20	1

^{3.} Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	N/P	Test Condition	n	Min	Тур	Max	Unit
CHARGES, CAPACITANCES AND GATE RESISTANCE								
Total Gate Charge	Q _{G(TOT)}					1.5	2.5	
Threshold Gate Charge	Q _{G(TH)}	N	45,474			0.1		
Gate-to-Source Charge	Q _{GS}	1	$V_{GS} = 4.5 \text{ V}, V_{DS} = -10 \text{ V}; I_D = 540 \text{ mA}$	I _D = 540 mA		0.2		
Gate-to-Drain Charge	Q_{GD}	1				0.35		- 0
Total Gate Charge	Q _{G(TOT)}					1.7	2.5	nC
Threshold Gate Charge	Q _{G(TH)}	P	V _{GS} = -4.5 V, V _{DS} = 10 V; I	_D = -380 mA		0.1		
Gate-to-Source Charge	Q _{GS}	7				0.3		
Gate-to-Drain Charge	Q_{GD}	1				0.4		
SWITCHING CHARACTERISTIC	CS (V _{GS} = V) (Not	e 4)						
Turn-On Delay Time	t _{d(ON)}	N	V_{GS} = 4.5 V, V_{DD} = -10 V, I_{D} = 540 mA, R_{G} = 10 Ω			6.0		
Rise Time	t _r	1				4.0		
Turn-Off Delay Time	t _{d(OFF)}	1				16		
Fall Time	t _f	1				8.0		
Turn-On Delay Time	t _{d(ON)}	Р				10		ns
Rise Time	t _r	1	V _{GS} = -4.5 V, V _{DD} = 10 V, I _I	_D = -215 mA,		12		
Turn-Off Delay Time	t _{d(OFF)}	1	$V_{GS} = -4.5 \text{ V}, V_{DD} = 10 \text{ V}, I_{R}$ $R_{G} = 10 \Omega$			35		
Fall Time	t _f	1				19		
Drain-Source Diode Character	istics							
Forward Diode Voltage	V _{SD}	N	$V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$ $I_S = 350 \text{ mA}$ $I_S = -350 \text{ mA}$			0.7	1.2	.,
		Р				-0.8	-1.2	V
Reverse Recovery Time	t _{RR}	N	$V_{GS} = 0 \text{ V}, \qquad I_{S} = 350 \text{ mA}$			6.5		
		Р	dIS/dt = 100 A/μs	I _S = -350 mA		13		ns

^{4.} Switching characteristics are independent of operating junction temperatures

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

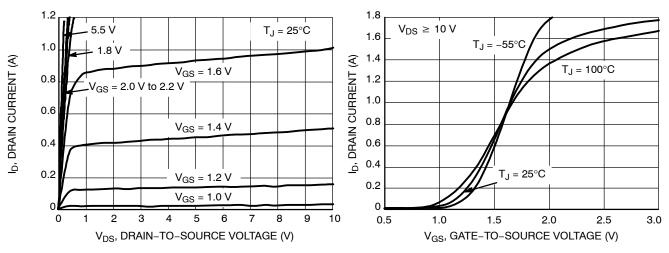


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

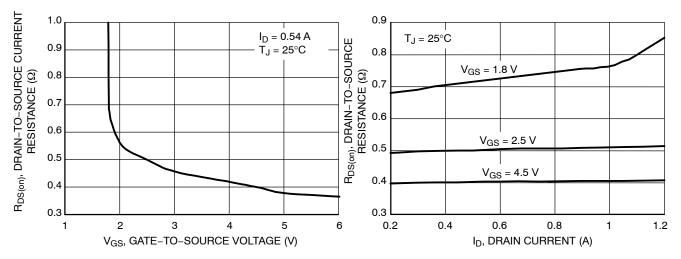


Figure 3. On-Resistance versus Gate-to-Source Voltage

Figure 4. On-Resistance versus Drain Current and Gate Voltage

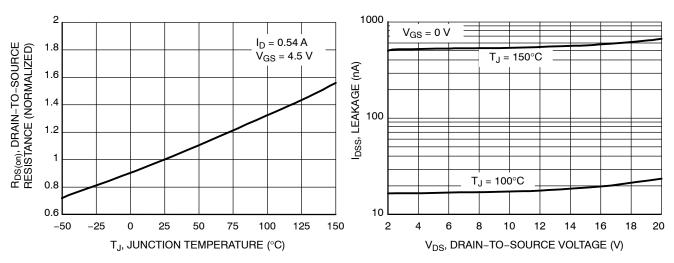


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current versus Voltage

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

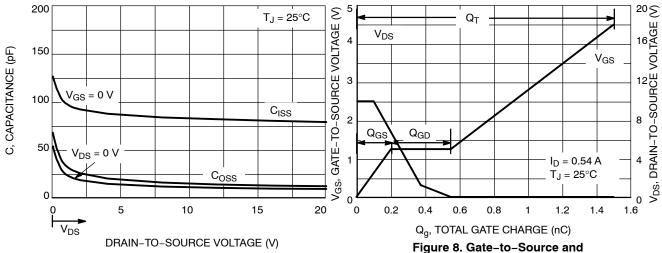


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

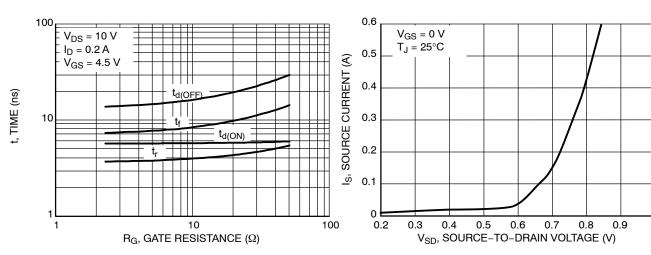


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

P-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

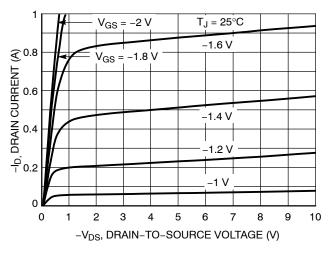


Figure 1. On-Region Characteristics

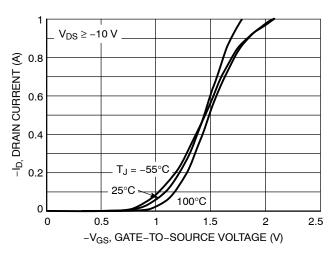


Figure 2. Transfer Characteristics

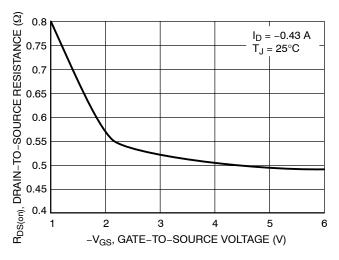


Figure 3. On-Resistance vs. Gate-to-Source Voltage

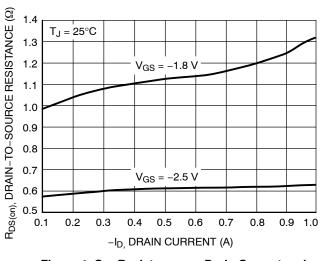


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

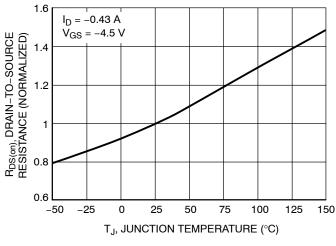


Figure 5. On–Resistance Variation with Temperature

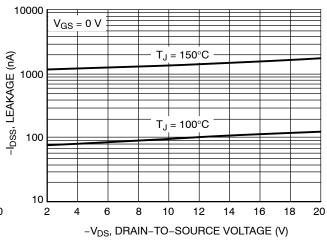


Figure 6. Drain-to-Source Leakage Current vs. Voltage

P-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

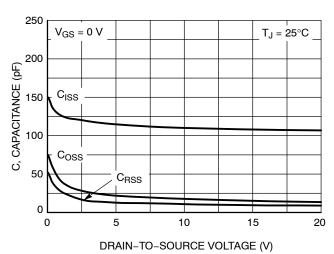
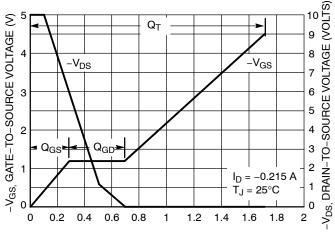



Figure 7. Capacitance Variation

Q_G, TOTAL GATE CHARGE (nC)

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

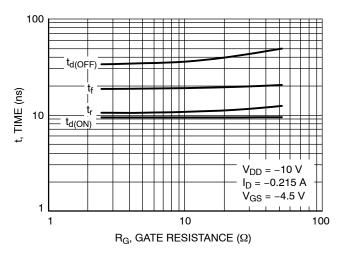


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

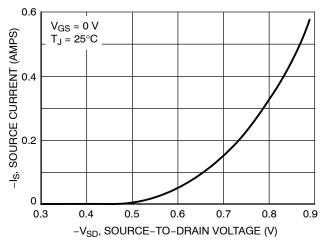
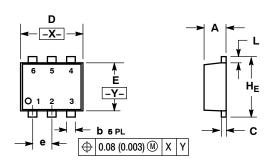
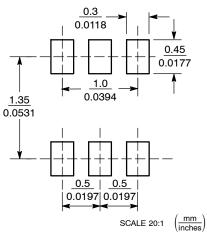



Figure 10. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A ISSUE F



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M. 1982.
- CONTROLLING DIMENSION: MILLIMETERS
- 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.021	0.023	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.12	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.062	0.066	
Е	1.10	1.20	1.30	0.043	0.047	0.051	
е		0.5 BSC)	0.02 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.50	1.60	1.70	0.059	0.062	0.066	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opport

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative