

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







# **Dual Channel LED Driver/Current Source**

This device is designed to replace switching regulators for driving LEDs in low voltage DC applications (up to 6 V). Its unique integrated circuit design provides the ability to drive external FETs to achieve higher voltage and current capabilities for different application needs (see Figure 8). An external resistor allows the circuit designer to set the LED current for different applications needs. The device is packaged in a small surface mount leadless package (DFN8), which results in a significant reduction of both system cost and board space.

#### **Features**

- Low Dropout Voltage < 300 mV
- Programmable Output Current from 1 mA to 30 mA
- Dual Output with Independent Current Limit Set
- DC Current in LED
- Analog/Digital PWM Capability
- This is a Pb-Free Device

#### **Typical Applications**

- Portables: PDAs, Cell phones
- LCD Backlighting Applications

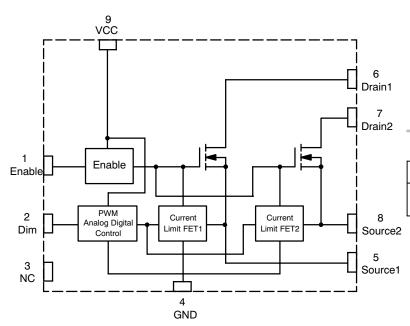



Figure 1. Block Diagram



#### ON Semiconductor®

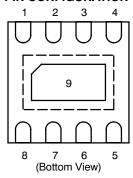
http://onsemi.com

#### MARKING DIAGRAM



## 1 43 M •

#### DFN8 CASE 506AQ


43 = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

#### PIN CONFIGURATION



#### **ORDERING INFORMATION**

| Device       | Package           | Shipping <sup>†</sup> |
|--------------|-------------------|-----------------------|
| NUD4301MNT1G | DFN8<br>(Pb-Free) | 3000/Tape & Reel      |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

#### **FUNCTIONAL PIN DESCRIPTIONS**

| Pin | Function | Description                                                                                                                                                                                  |  |  |
|-----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | Enable   | The device is enabled with a positive voltage signal at this pin. The enable controls both channels.                                                                                         |  |  |
| 2   | Dim      | This pin is used for analog or PWM dimming control. An analog signal of $0-3.3$ volts is required, or a PWM signal with an amplitude greater than 3.3 volts. The dim controls both channels. |  |  |
| 3   | NC       | No connection.                                                                                                                                                                               |  |  |
| 4   | GND      | Ground Reference to the device.                                                                                                                                                              |  |  |
| 5   | Source1  | Source terminal of the FET 1                                                                                                                                                                 |  |  |
| 6   | Drain1   | Drain terminal of the FET 1, which is also the switching node of the load 1.                                                                                                                 |  |  |
| 7   | Drain2   | Drain terminal of the FET 2, which is also the switching node of the load 2.                                                                                                                 |  |  |
| 8   | Source2  | Source terminal of the FET 2                                                                                                                                                                 |  |  |
| 9   | VCC      | Input voltage to the LED driver. This voltage is compatible with any battery based systems of up to 6 V.                                                                                     |  |  |

#### **MAXIMUM RATINGS**

|                                                                                   | Symbol                                                    | Value            | Unit                   |             |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|------------------------|-------------|
| Input Voltage, Operating                                                          | Steady State (V <sub>CC</sub> to GND)<br>Transient (1 ms) | V <sub>CC</sub>  | -0.3 to 6<br>-0.3 to 7 | V           |
| Drain Voltage, Operating                                                          | Steady State (Drain-to-Source)<br>Transient (1 ms)        | V <sub>DS</sub>  | -0.3 to 6<br>-0.3 to 7 | V           |
| Enable Voltage, Operating                                                         | Enable Voltage, Operating Steady State                    |                  | -0.3 to 6              | V           |
| Dim Voltage, Operating                                                            | $V_{dim}$                                                 | -0.3 to 3.6      | V                      |             |
| Drain Current, Peak                                                               | I <sub>Dpk</sub>                                          | 100              | mA                     |             |
| Drain Current, Continuous                                                         | I <sub>D(avg)</sub>                                       | 30               | mA                     |             |
| Thermal Resistance, Junction-to-Air (Note 1)                                      |                                                           | $Q_JA$           | 365                    | °C/W        |
| Power Dissipation @ T <sub>A</sub> = 25°C (No Derating above 25°C                 | te 1)                                                     | P <sub>max</sub> | 340<br>2.7             | mW<br>mW/°C |
| Human Body Model (HBM)<br>Machine Model (MM)<br>According to EIA/JESD22/A114, A11 | ESD                                                       | 2000<br>200      | V                      |             |
| Operating Temperature Range                                                       | TJ                                                        | -40 to 150       | °C                     |             |
| Non-Operating Temperature Range                                                   |                                                           | TJ               | -55 to 175             | °C          |
| Maximum Lead Temperature for Sol                                                  | T <sub>L</sub>                                            | 260              | °C                     |             |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Mounted onto minimum pad board.

**ELECTRICAL CHARACTERISTICS** (Unless otherwise noted:  $V_{CC}$  = 3.6 V,  $R_{sense}$  = 4.7  $\Omega$ , 1%,  $T_A$  = 25°C for typical values, For min/max values  $T_J$  is the applicable junction temperature)

| Characteristics                                                                                                                                                 | Symbol             | Min | Тур | Max | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-----|-----|------|
| Power FET (Each Channel)                                                                                                                                        |                    |     |     |     |      |
| ON Resistance (V <sub>CC</sub> = 3.6 V, I <sub>D</sub> = 10 mA, R <sub>sense</sub> = 4.7 $\Omega$ , V <sub>dim</sub> = 3.3 V)                                   | R <sub>DSon</sub>  | -   | 5.0 | 5.6 | Ω    |
| Zero Enable Voltage Drain Current (V <sub>DS</sub> = 6 V, V <sub>Enable</sub> = 0 V)                                                                            | I <sub>DSS</sub>   | -   | 10  | 100 | nA   |
| Drain-to-Source Sustaining Voltage ( $I_D = 100 \mu A$ )                                                                                                        | V <sub>BRDSS</sub> | 7.0 | -   | -   | V    |
| Output Capacitance (V <sub>DS</sub> = 6 V, V <sub>Enable</sub> = 0 V, f = 1 kHz)                                                                                |                    | -   | 100 | -   | pF   |
| Voltage Drop (Note 2) (V <sub>CC</sub> = 3.6 V, V <sub>LED</sub> = 3.3 V, I <sub>D</sub> = 20 mA, R <sub>sense</sub> = 4.7 $\Omega$ , V <sub>dim</sub> = 3.3 V) | $V_{drop}$         | -   | -   | 300 | mV   |
| Current Regulation Circuit (Each Channel)                                                                                                                       |                    |     |     |     |      |
| Output Current Regulation ( $V_{CC}$ = 3.6 V, $V_{LED}$ = 3.3 V, $R_{sense}$ = 4.7 $\Omega$ , $V_{dim}$ = 3.3 V)                                                | l <sub>out</sub>   | 19  | 20  | 21  | mA   |
| Enable                                                                                                                                                          |                    | •   | •   | •   | •    |
| Logic Level High (Unit Operational)                                                                                                                             | $V_{ENhigh}$       | 1.7 | -   | -   | V    |
| Logic Level Low (Unit Shutdown)                                                                                                                                 | V <sub>ENlow</sub> | -   | -   | 0.7 | V    |
| Dim                                                                                                                                                             |                    |     |     |     |      |
| Off Voltage (Zero Output Current), ID = 20 $\mu$ A, R <sub>sense</sub> = 4.7 $\Omega$                                                                           | V <sub>zero</sub>  | -   | -   | 50  | mV   |
| On Voltage (Max Output Current), $I_D = I_{out}$ , $R_{sense} = 4.7 \Omega$                                                                                     | V <sub>max</sub>   | 3.1 | 3.3 | 3.6 | V    |
| Max PWM Frequency                                                                                                                                               | f <sub>max</sub>   | -   | 10  | -   | kHz  |
| Bias Supply (Complete Device)                                                                                                                                   |                    |     |     |     |      |
| Bias Current ( $V_{CC} = 3.6 \text{ V}$ , Device Non-Operational, $V_{Enable} = 0 \text{ V}$ )                                                                  | I <sub>BIAS1</sub> | -   | 10  | 100 | nA   |
| Bias Current (V <sub>CC</sub> = 3.6 V, Device Operational, V <sub>Enable</sub> = V <sub>CC</sub> )                                                              | I <sub>BIAS2</sub> | -   | 150 | 250 | μΑ   |

<sup>2.</sup>  $V_{drop} = V_{DS} + V_{Rsense}$ 

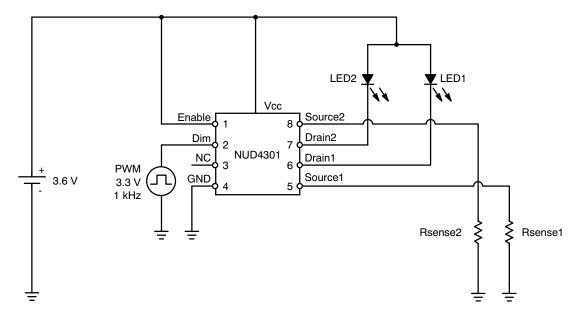



Figure 2. Typical Low Voltage Application Circuit

#### **TYPICAL PERFORMANCE CURVES**

(T<sub>A</sub> = 25°C, unless otherwise noted)

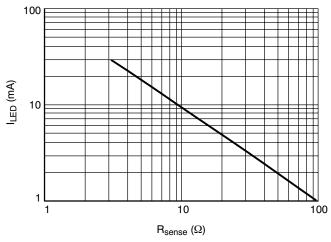



Figure 3. Current Limit Adjustment

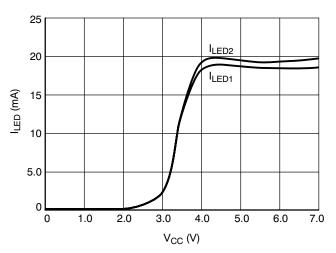



Figure 4. Typical Line Regulation Performance (V<sub>LED</sub> = 3.4 V, R<sub>sense</sub> = 4.7  $\Omega$ )

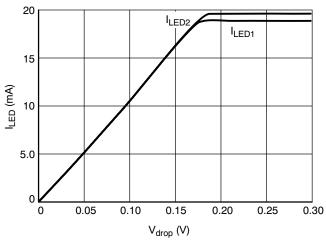



Figure 5. Typical Current Regulation vs.  $V_{drop}$  ( $V_{drop} = V_{DS} + V_{Rsense}$ )

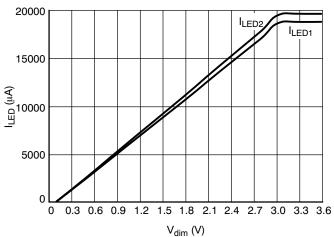



Figure 6. Typical Current Regulation vs.  $V_{dim}$  ( $V_{LED}$  = 3.4 V,  $R_{sense}$  = 4.7  $\Omega$ )

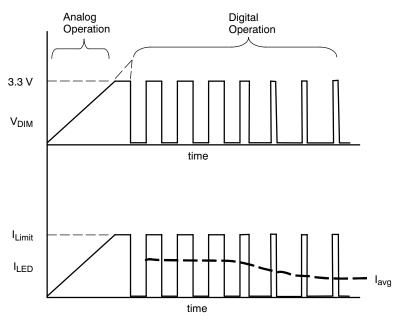



Figure 7. Dimming Operation Curves (Graph obtained from SPICE simulations)

#### **Theory of Operation**

This device contains two LED current sources. Each channel is comprised of a lateral N-channel FET controlled by a current limit circuit that senses the voltage drop across the R<sub>sense</sub> resistor and compares it with an internal voltage reference to provide the current regulation. For dimming applications, the current limit circuit operates in combination with the PWM signal applied to the dim pin of the device for control purposes.

#### **Current Limit Circuit**

With a DC voltage of 3.3 V applied to the Dim pin of the device, the internal reference voltage of the current limit circuit is set to 94 mV. The  $R_{sense}$  resistor is then selected through a very simple formula:  $R_{sense}$  = 94 mV /  $I_{LED}.$  This allows the user to set different LED currents (between 1 mA and 30 mA). If different  $V_{dim}$  voltage is used, then the  $I_{LED}$  current will change according to the following formula:

$$I_{LED} = \frac{(V_{dim}/35)}{R_{sense}}$$

#### **Dim Circuit**

For dimming control, a PWM signal may be applied to the dim pin of the device. This PWM signal can be used to perform digital dimming.

For digital dimming, the amplitude of the PWM signal must be 3.3 V or higher. The LED current will be proportional to the duty cycle of the PWM signal.

For analog dimming, the input signal to the Dim pin must be between 0 V and 3.3 V. The resulting output current will be given by the previous  $I_{LED}$  formula. It is important to mention that variations on the turn on point from part-to-part are expected due to the offset of the internal amplifiers. That is, some devices may turn on right after  $V_{dim} = 50 \text{ mV}$  and others until  $V_{dim}$  is around 0.3 V.

If a PWM signal is beyond the input frequency range for the Dim pin, a RC filter may be used to convert it to an analog signal.

The RC filter generates an analog voltage signal, which is proportional to the duty cycle of the PWM signal applied. This analog signal is then used as the new reference voltage for the current limit circuit, which compares it with the voltage signal generated across R<sub>sense</sub> to provide the current regulation.

#### Enable

The enable circuit turns the device on when a positive signal is applied to the enable pin. The circuit is designed to allow low current consumption (0.1  $\mu$ A typical) when the device is disabled.

#### **LCD Backlighting Applications**

The voltage and current capability of the NUD4301 device can be increased by using external FETs so that the circuit can be used in high voltage backlighting applications such as TV. Figure 8 shows the schematic diagram of this concept.

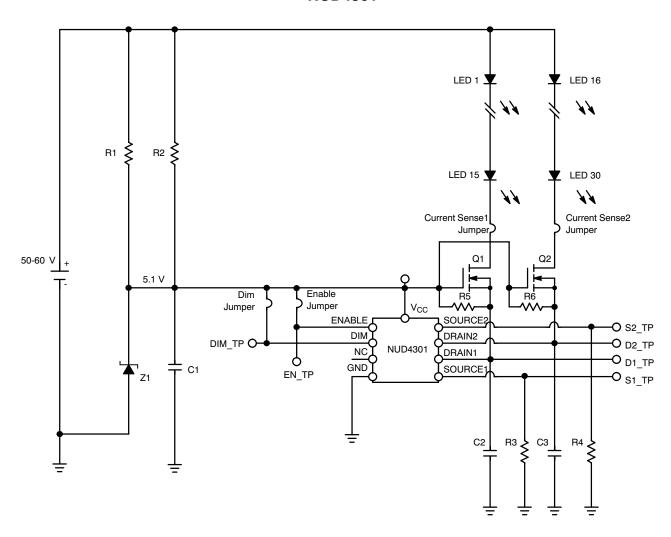
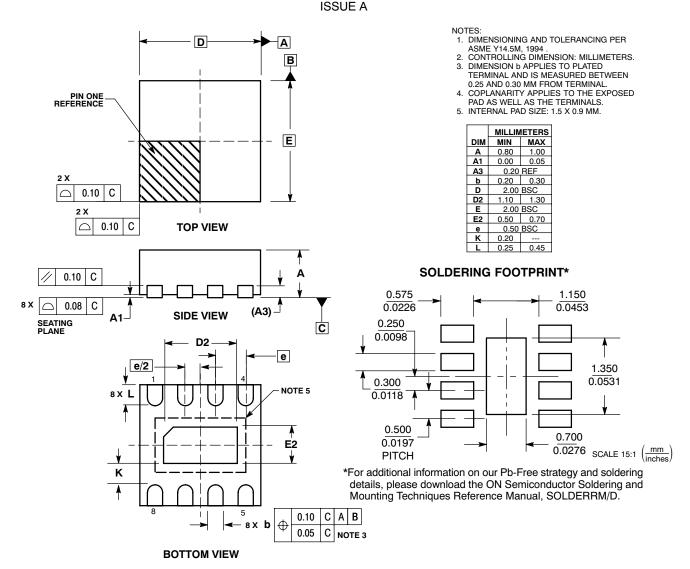



Figure 8. Typical LCD Backlighting Application Circuit


Table 1. PROPOSED BOM FOR THE CIRCUIT OF FIGURE 8

| Designator | Description                | Characteristics | Part Number     | Manufacturer     |
|------------|----------------------------|-----------------|-----------------|------------------|
| R1, R2     | Leaded Resistor            | 10 K, 1/2 W, 5% | User Selectable | User Selectable  |
| C1         | Ceramic SMT 1206 Capacitor | 10 μF, 10 V     | User Selectable | User Selectable  |
| Z1         | Zener Diode SOT-23         | 5.1 V, 300 mW   | BZX84C5V1LT1, G | ON Semiconductor |
| R3, R4     | SMT 0805 Resistor          | 4.7 Ω, 1%       | User Selectable | User Selectable  |
| R5, R6     | SMT 0805 Resistor          | 560 K, 5%       | User Selectable | User Selectable  |
| C2, C3     | Tantalum Leaded Capacitor  | 1 μF, 10 V      | User Selectable | User Selectable  |
| Q1, Q2     | N-Channel FET SOT-23       | 60 V, 115 mA    | 2N7002LT1G      | ON Semiconductor |
| NUD4301    | Dual LED Driver, DFN 2x2   | 5 V, 30 mA      | NUD4301         | ON Semiconductor |

For more details about this application circuit concept, please refer to the application notes posted at the ON Semiconductor Web site in the NUD4301 page.

#### PACKAGE DIMENSIONS

#### DFN8 CASE 506AQ-01



ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative