

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Test Procedure for the NV47710PDAJGEVB Evaluation Board

Test Procedure:

- 1. Connect the test setup as shown in Figure 1. See Table 1 with required equipment.
 - Letter **F** Force line
 - Letter S Sense line
- 2. Select output current limit by connecting jumper J₅ J₈.

 - $J_5 I_{LIM0} \sim 10 \text{ mA}$ $J_6 I_{LIM1} \sim 170 \text{ mA}$
 - $J_7 I_{LIM2} \sim 340 \text{ mA}$
 - $J_8 I_{LIM3} R_{CSO3}$ position available for individual current limit setting by resistor from range 728 Ω to 25.5 k Ω
- 3. Set Input Voltage and turn on Power Supply.
- 4. Enable chip by connecting external Voltage Source on jumper J₃. Output voltage must be higher than 2.31 V but maximally 7 V.
- 5. Set load current (max 350 mA) and turn on Load.
- 6. Monitor Output voltage, it's given according to Equation 1.

$$V_{out} = 1.275 \left(1 + \frac{R_1}{R_2}\right)$$
 (eq. 1)

7. Monitor CSO voltage on connector J₄. It should be max 2.55 V in steady state. The CSO voltage is proportional to output current according to Equation 2.

$$V_{CSO} = I_{out} \left(R_{CSO} \times \frac{1}{100} \right)$$
 (eq. 2)

8. Compare your results with measured results in **Table 2**.

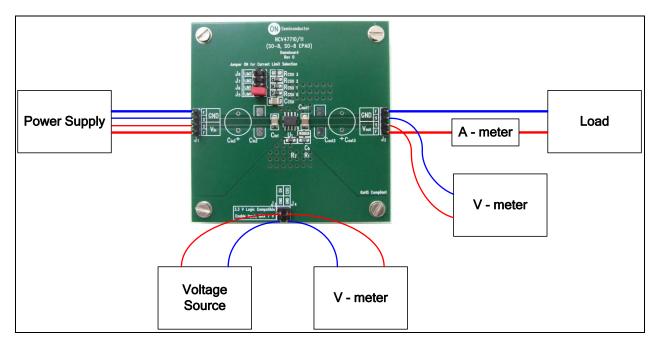


Figure 1. Test Setup

Table 1: Required Equipment

Equipment	Ranges
Power Supply	0 V – 45 V / 500 mA
Voltage Source	0 V – 7 V
Load	0 mA – 500 mA
V - meter	0 V – 20 V
A - meter	0 mA – 500 mA

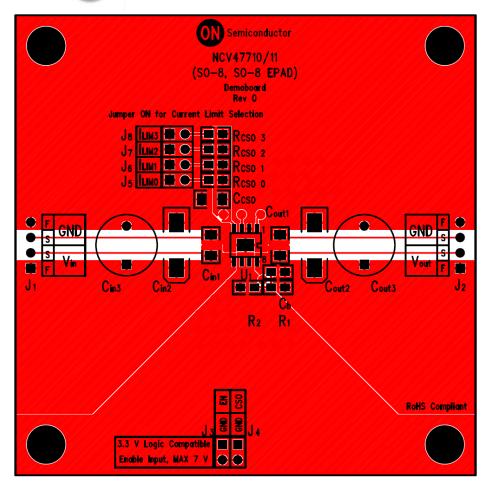


Figure 2. PCB Layout

Table 2: Measured Results

Parameter Test Conditions	Value		Unit	
	rest conditions	Nominal	Measured	Offic
Output Voltage	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.02 \text{ V}, I_{out} = 5 \text{ mA}, R_{CSO} = \text{Short to}$ ground	5.02	5.03	V
	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.02 \text{ V}, I_{out} = 350 \text{ mA}, R_{CSO} = Short $ to ground	5.02	5.04	
Output Current	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.02 \text{ V}, V_{out} = 0 \text{ V}, R_{CSO} = 25.5 \text{ k}\Omega$	10	10.45	
	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.02 \text{ V}, V_{out} = 0 \text{ V}, R_{CSO} = 1.5 \text{ k}\Omega$	170	175.6	mA
	$V_{in} = 13.5 \text{ V}, V_{out_nom} = 5.02 \text{ V}, V_{out} = 0 \text{ V}, R_{CSO} = 750 \Omega$	340	353	