

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

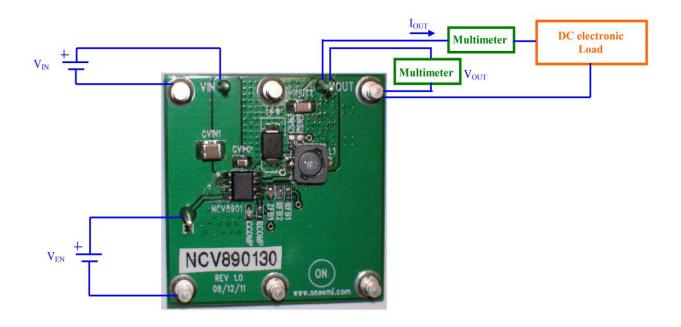
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Test Procedure for the NV890130PDR2GEVB Evaluation Board

Required Equipment:

2 x DC voltage source 1 x DC electronic load 2 x Multimeters

Rev 1.0 Page 2 September 6, 2012

12/21/2012 - 1 - www.onsemi.com

Test Procedure:

- 1. Connect the test setup as shown above.
- 2. Make sure the load is not enabled.
- 3. Apply an enable voltage V_{EN} =0V. Apply an input voltage, V_{IN} = 13.2 V. V_{OUT} should be 0V.
- 4. Apply an enable voltage V_{FN} =3V. Verify that the output voltage is 3.3 V +/-0.15 V.
- 5. Set up the load to 1.2A and enable it. Verify that the output voltage is still 3.3 V \pm 0.15 V.
- 6. Change the input voltage to 36 V. Verify that the output voltage is 0 V.
- 7. Change the input voltage to 6 V. Verify that the output voltage is 3.3 V +/-0.15 V.
- 8. Change the input voltage to 3.9 V. Verify that the output voltage is 0 V.
- 9. Change the input voltage to 6 V. Verify that the output voltage is 3.3 V +/-0.15 V.
- 10. Apply an enable voltage V_{EN} =0V. V_{OUT} should be 0V.
- 11. Turn off the DC sources.