

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET

30 V, 58 A, Single N-Channel, DPAK/IPAK

Features

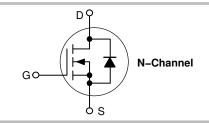
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- AEC Q101 Qualified NVD4809N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- CPU Power Delivery
- DC-DC Converters
- Low Side Switching

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

	. 0		,		
Param	eter		Symbol	Value	Unit
Drain-to-Source Voltag	е		V_{DSS}	30	V
Gate-to-Source Voltage	е		V _{GS}	±20	V
Continuous Drain		T _A = 25°C	I _D	13.1	Α
Current ($R_{\theta JA}$) (Note 1)		T _A = 85°C		10.1	
Power Dissipation $(R_{\theta JA})$ (Note 1)		T _A = 25°C	P _D	2.63	W
Continuous Drain		T _A = 25°C	I _D	9.6	Α
Current ($R_{\theta JA}$) (Note 2)	Steady	T _A = 85°C		7.4	
Power Dissipation $(R_{\theta JA})$ (Note 2)	State	T _A = 25°C	P _D	1.4	W
Continuous Drain		T _C = 25°C	I _D	58	Α
Current (R _{θJC}) (Note 1)		T _C = 85°C		45	
Power Dissipation $(R_{\theta JC})$ (Note 1)		T _C = 25°C	P _D	52	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	130	Α
Current Limited by Packa	age	T _A = 25°C	I _{DmaxPkg}	45	Α
Operating Junction and S	Storage Te	emperature	T _J , T _{stg}	-55 to 175	°C
Source Current (Body Di	ode)		IS	43	Α
Drain to Source dV/dt			dV/dt	6.0	V/ns
Single Pulse Drain-to-S Energy (V_{DD} = 24 V, V_{GS} L = 1.0 mH, $I_{L(pk)}$ = 13.5	$_{S} = 10 \text{ V},$; = 10 V,		91.0	mJ
Lead Temperature for So (1/8" from case for 10 s)	ldering Pur	rposes	TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	9.0 mΩ @ 10 V	58 A
30 v	14 mΩ @ 4.5 V	30 A

STYLE 2

IPAK CASE 369AD (Straight Lead) STYLE 2

IPAK
CASE 369D
(Straight Lead
DPAK) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENTS

A = Assembly Location*

Y = Year
WW = Work Week
4809N = Device Code
G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

^{*} The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	2.9	°C/W
Junction-to-TAB (Drain)	$R_{ heta JC-TAB}$	3.5	
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	57.1	
Junction-to-Ambient - Steady State (Note 2)	$R_{ heta JA}$	107.2	

- Surface-mounted on FR4 board using 1 in sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

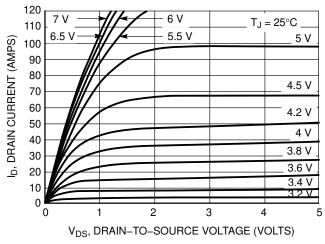
Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				25		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V$	T _J = 25°C			1.0	μΑ
		$V_{DS} = 24 \text{ V}$	T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	_{GS} = ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, I	D = 250 μA	1.5		2.5	V
Negative Threshold Temperature Coefficient	$V_{GS(TH)}/T_J$				5.7		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ to}$	$I_D = 30 \text{ A}$		7.0	9.0	mΩ
		11.5 V I _D = 15 A		7.0			
		V _{GS} = 4.5 V	I _D = 30 A		12	14	
			I _D = 15 A		11		
Forward Transconductance	gFS	V _{DS} = 15 V	I _D = 15 A		9.0		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}				1456		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f}$ $V_{DS} =$			315		1
Reverse Transfer Capacitance	C _{rss}	.02			200		
Total Gate Charge	Q _{G(TOT)}				11	13	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 4.5 V,$	V _{DS} = 15 V,		2.5		-
Gate-to-Source Charge	Q _{GS}	$I_D = 3$	80 Å		4.8		
Gate-to-Drain Charge	Q_{GD}				5.0		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 11.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 30 \text{ A}$			25		nC
SWITCHING CHARACTERISTICS (Note 4)	•				•	•	•
Turn-On Delay Time	t _{d(on)}				12.3		ns
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 15 \text{ V},$ $I_{D} = 15 \text{ A}, R_{G} = 3.0 \Omega$			21.3		1
Turn-Off Delay Time	t _{d(off)}				15.1		1
Fall Time	t _f				5.3		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

4. Switching characteristics are independent of operating junction temperatures.

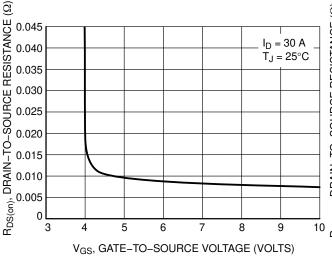
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)


Parameter	Symbol	Test Co	ndition	Min	Тур	Max	Unit
Turn-On Delay Time	t _{d(on)}				7.0		ns
Rise Time	t _r	$V_{GS} = 11.5 V,$	V _{DS} = 15 V,		22.7		
Turn-Off Delay Time	t _{d(off)}	I _D = 15 A, F	$R_G = 3.0 \Omega$		25.3		
Fall Time	t _f	1			2.8		
DRAIN-SOURCE DIODE CHARACTERIST	ICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.95	1.2	V
		I _S = 30 A	T _J = 125°C		0.83		
Reverse Recovery Time	t _{RR}				19.5		ns
Charge Time	ta	$V_{GS} = 0 \text{ V, dls/}$	dt = 100 A/μs,		10.7		
Discharge Time	tb	I _S = 30 A			8.8		
Reverse Recovery Time	Q _{RR}				9.2		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				2.49		nH
Drain Inductance, DPAK	L _D	1			0.0164		
Drain Inductance, IPAK	L _D	T _A = 25°C			1.88		
Gate Inductance	L _G				3.46		
Gate Resistance	R_{G}	1			2.4		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{4.} Switching characteristics are independent of operating junction temperatures.


TYPICAL PERFORMANCE CURVES

120 $V_{DS} \ge 10 \text{ V}$ DRAIN CURRENT (AMPS) 100 80 60 40 T_J = 125°C $T_J = 25^{\circ}C$ ò 20 $T_J = -55^{\circ}C$ 0 0 2 3 5 6 V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

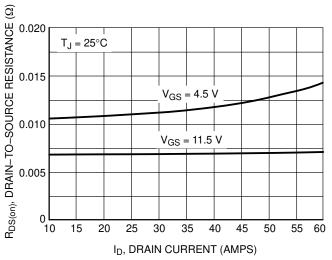
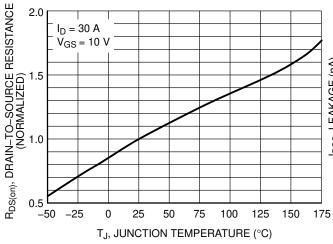



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On–Resistance vs. Drain Current and Gate Voltage

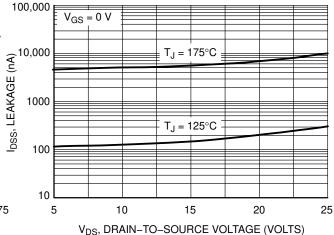
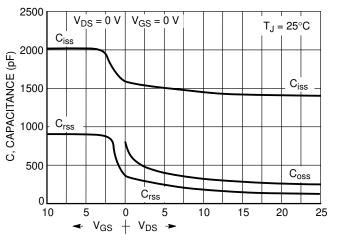



Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Drain Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

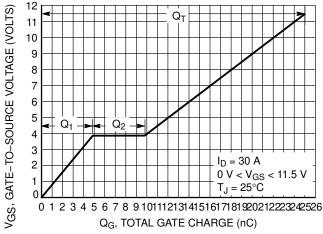


Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

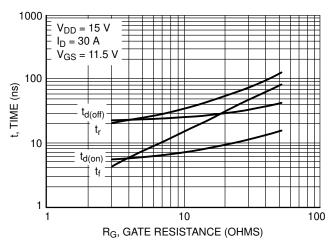


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

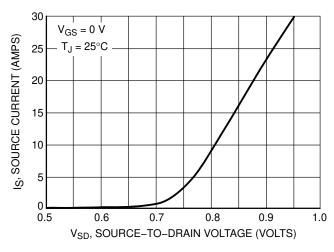


Figure 10. Diode Forward Voltage vs. Current

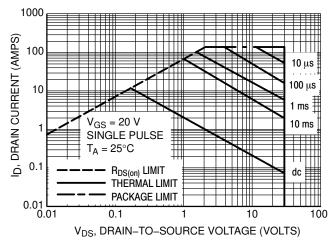


Figure 11. Maximum Rated Forward Biased Safe Operating Area

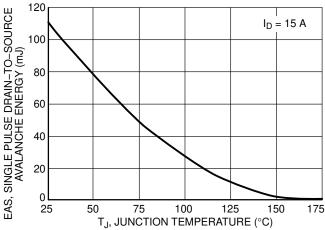


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

TYPICAL PERFORMANCE CURVES

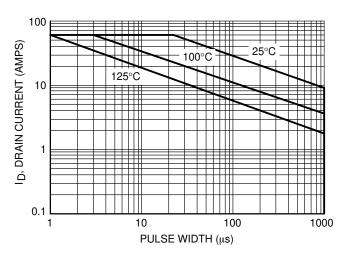


Figure 13. Avalanche Characteristics

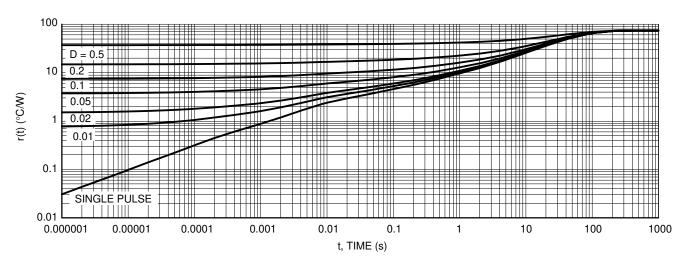
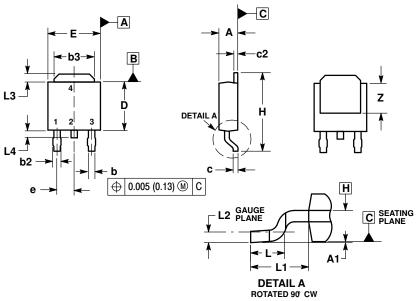


Figure 14. Thermal Response

ORDERING INFORMATION


Order Number	Package	Shipping [†]
NTD4809NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4809N-1G	IPAK (Pb-Free)	75 Units/Rail
NTD4809N-35G	IPAK Trimmed Lead $(3.5 \pm 0.15 \text{ mm})$ $(Pb-Free)$	75 Units/Rail
NVD4809NT4G	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GUAGE)

CASE 369AA **ISSUE B**

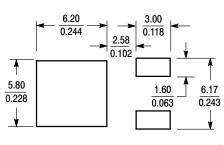
NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

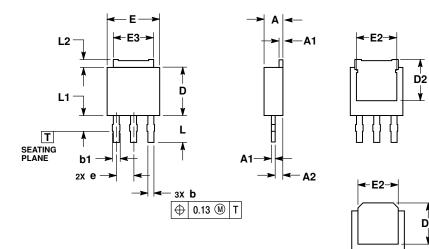

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND F ARP DETERMINED AT THE
- 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A 1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74 REF		
L2	0.020	BSC	0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

SOLDERING FOOTPRINT*


 $\left(\frac{mm}{inches}\right)$ SCALE 3:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

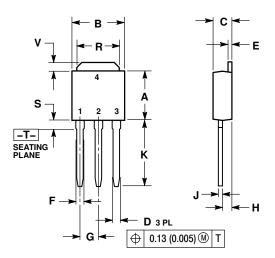
PACKAGE DIMENSIONS

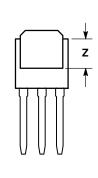
3.5 MM IPAK, STRAIGHT LEAD

CASE 369AD **ISSUE B**

- NOTES:
 1.. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2.. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH.

$\overline{}$						
	MILLIMETERS					
DIM	MIN	MAX				
Α	2.19	2.38				
A1	0.46	0.60				
A2	0.87	1.10				
b	0.69	0.89				
b1	0.77	1.10				
D	5.97	6.22				
D2	4.80					
E	6.35	6.73				
E2	4.57	5.45				
E3	4.45	5.46				
е	2.28	2.28 BSC				
L	3.40	3.60				
L1	-	2.10				
L2	0.89	1.27				


STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN


D₂

OPTIONAL CONSTRUCTION

PACKAGE DIMENSIONS

IPAK CASE 369D ISSUE C

NOTES

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
Κ	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE

- 2. DRAIN
- 3. SOURCE
- DRAIN

ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, ON semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC wors the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications the product could receive a situation where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative