

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Power MOSFET

60 V, 65 m Ω , 12 A, Dual N-Ch Logic Level

Features

- Small Footprint (5x6 mm) for Compact Designs
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- 175°C Operating Temperature
- NVMFD5489NLWF Wettable Flank Option for Enhanced Optical
- AEC-Q101 Qualified and PPAP Capable
- This is a Pb-Free Device

MAXIMUM RATINGS (T.I = 25°C unless otherwise noted)

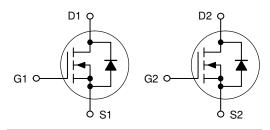
Parameter		Symbol	Value	Unit	
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage	Gate-to-Source Voltage			±20	V
Continuous Drain Cur-	Steady	$T_{mb} = 25^{\circ}C$	I _D	12	Α
rent $R_{\Psi J-mb}$ (Notes 1, 2, 3, 4)		$T_{mb} = 100^{\circ}C$		8.8	
Power Dissipation	State	T _{mb} = 25°C	P_{D}	23.4	W
R _{ΨJ-mb} (Notes 1, 2, 3)		T _{mb} = 100°C		11.7	
Continuous Drain Current R _{0.IA}		$T_A = 25^{\circ}C$	I _D	4.5	Α
(Notes 1, 3 & 4)	Steady	T _A = 100°C		3.2	
Power Dissipation	State	T _A = 25°C	P_{D}	3.0	W
R _{θJA} (Notes 1 & 3)		T _A = 100°C		1.5	
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	62	Α
Operating Junction and Storage Temperature			T _J , T _{stg}	-55 to 175	°C
Source Current (Body Diode)			IS	22	Α
Single Pulse Drain-to–Source Avalanche Energy (T _J = 25°C, $I_{L(pk)}$ = 19.5 A, L = 0.1 mH, R_G = 25 Ω)			E _{AS}	19	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Junction-to-Mounting Board (top) - Steady State (Notes 2, 3)	$R_{\Psi J-mb}$	6.4	
Junction-to-Ambient - Steady State (Note 3)		50	°C/W
Junction-to-Ambient - Steady State (min footprint)	$R_{ hetaJA}$	161	

- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 2. Psi (Ψ) is used as required per JESD51-12 for packages in which substantially less than 100% of the heat flows to single case surface.
- Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.
- Continuous DC current rating. Maximum current for pulses as long as 1 second are higher but are dependent on pulse duration and duty cycle.



ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
60 V	65 mΩ @ 10 V	12 A
00 V	79 mΩ @ 4.5 V	12.4

Dual N-Channel

DFN8 5x6 (SO8FL) **CASE 506BT**

MARKING DIAGRAM

D1 D1 S1 G1 D1 XXXXXX S2 D2 **AYWZZ** G2 D2 D2 D2

XXXXXX = 5489NL

(NVMFD5489NL) or

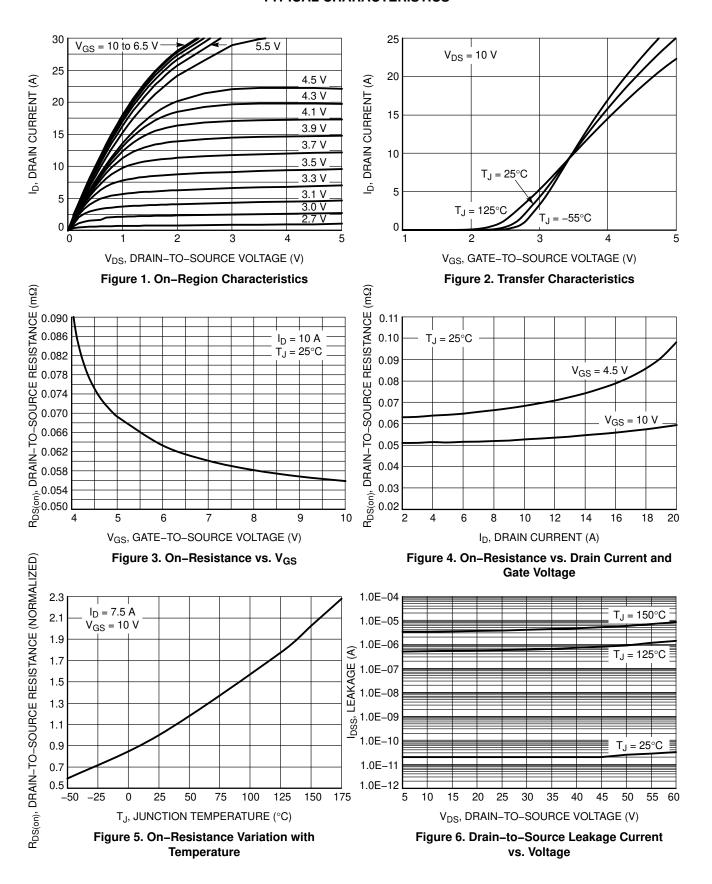
5489LW

(NVMFD5489NLWF) = Assembly Location

= Year = Work Week W = Lot Traceability

ORDERING INFORMATION

OTIDETHING IN OTHER TION				
Device	Package	Shipping [†]		
NVMFD5489NLT1G	DFN8 (Pb-Free)	1500/ Tape & Reel		
NVMFD5489NLT3G	DFN8 (Pb-Free)	5000/ Tape & Reel		
NVMFD5489NLWFT1G	DFN8 (Pb-Free)	1500/ Tape & Reel		
NVMFD5489NLWFT3G	DFN8 (Pb-Free)	5000/ Tape & Reel		


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_{D} = 250 \mu\text{A}$		60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J		Reference to 25°C I _D = 250 μA		67		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 60 V	T _J = 25°C			1.0	μΑ
Gate-to-Source Leakage Current	1	V _{DS} = 0 V, V _{GS}	T _J = 125°C			10 ±100	nA
	I _{GSS}	VDS = 0 V, VGS	- 120 V			1100	ПА
ON CHARACTERISTICS (Note 5)	I V		050 4	4.5	1	0.5	T v
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$		1.5		2.5	V
Negative Threshold Temperature Co- efficient	V _{GS(TH)} /T _J	Reference to 25°C $I_D = 250 \mu A$			4.86		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_D$	= 15 A		52	65	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D$	= 7.5 A		66	79	
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz, V}_{DS} = 25 \text{ V}$			330		pF
Output Capacitance	C _{oss}				80		
Reverse Transfer Capacitance	C _{rss}				39		
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_D = 6 \text{ A}$			12.4		nC
Threshold Gate Charge	Q _{G(TH)}				0.31		- - -
Gate-to-Source Charge	Q _{GS}				1.3		
Gate-to-Drain Charge	Q_{GD}				4.74		
SWITCHING CHARACTERISTICS (N	ote 6)						-
Turn-On Delay Time	t _{d(on)}				7		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	s = 48 V.		11		┥
Turn-Off Delay Time	t _{d(off)}	$I_D = 6 \text{ A}, R_G = 2.5 \Omega$			31		
Fall Time	t _f				21		
DRAIN-SOURCE DIODE CHARACTE	RISTICS		•		•	•	•
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V,	T _J = 25°C		0.83	1.2	V
Ü		I _S = 10 A	T _J = 125°C		0.71		1
Reverse Recovery Time	t _{RR}				24.2		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = 10 \text{ A}$			20.2		1
Discharge Time	t _b				4.0		1
Reverse Recovery Charge	Q _{RR}				26.5		nC
PACKAGE PARASITIC VALUES	•				-	-	-
Source Inductance	L _S	T _A = 25°C			0.93		nH
Drain Inductance	L _D				0.005		┪
Gate Inductance	L _G				1.84		1
Gate Resistance	R_{G}				12		Ω

^{5.} Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.
6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

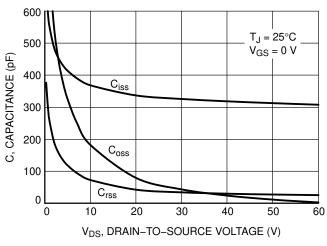


Figure 7. Capacitance Variation

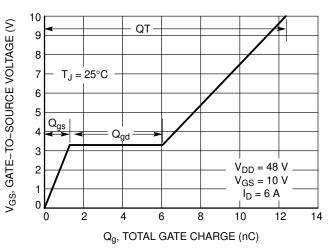


Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

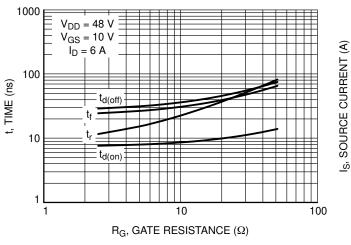


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

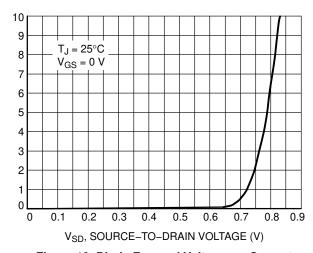


Figure 10. Diode Forward Voltage vs. Current

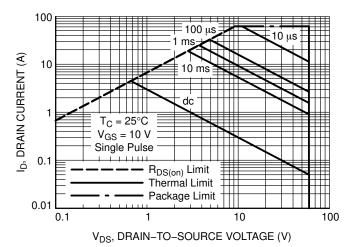


Figure 11. Maximum Rated Forward Biased Safe Operating Area

TYPICAL CHARACTERISTICS

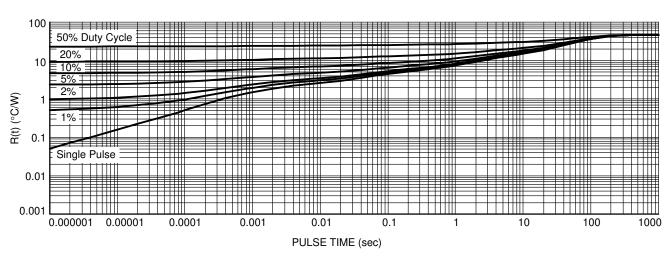
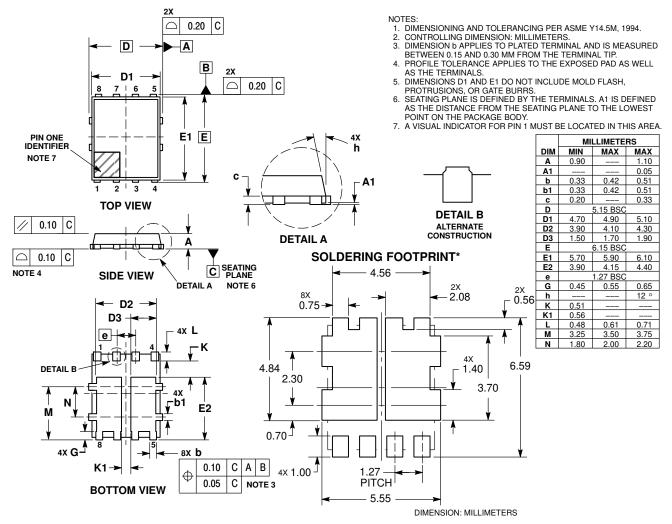



Figure 12. Thermal Response

PACKAGE DIMENSIONS

DFN8 5x6, 1.27P Dual Flag (SO8FL-Dual)

CASE 506BT ISSUE E

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdi/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303-675-2173 or 600-344-3660 foil Free USA/Cariada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Cariada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative