imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NX5P3090 USB PD and type C current-limited power switch Rev. 1 – 1 August 2016 Pro

Product data sheet

1. General description

The NX5P3090 is a precision adjustable current-limited power switch for USB PD application. The device includes under voltage lockout, over-temperature protection, and reverse current protection circuits to automatically isolate the switch terminals when a fault condition occurs. The 29 V tolerance on VBUS pin ensures the device is able to work on a USB PD port; a current limit input (ILIM) pin defines the over-current limit threshold; an open-drain fault output (FAULT) indicates when a fault condition has occurred.

The over-current limit threshold can be programmed from 400 mA to 3.3 A, using an external resistor between the ILIM pin and GND pin. In the over current condition, the device will clamp the output current to the value set by ILIM and keep the switch on while assert the FAULT flag. To minimize current surges during turn on, the device has built in soft start which controls the power switch rise time.

Surge protection has been integrated in the device to enhance system robustness. The enable input includes integrated logic level translation making the device compatible with lower voltage processors and controllers.

NX5P3090 is offered in a 12 bump 1.35 x 1.65 mm, 0.4 mm pitch WLCSP package.

2. Features and benefits

- VINT supply voltage range from 2.5 V to 5.5 V
- 29 V tolerance on VBUS and EN pin
- Adjustable current limit from 400 mA to 3.3 A
- Clamped current output in over-current condition
- Very low ON resistance: 34 mΩ (typical)
- Active HIGH EN pin with internal pull down resistor
- All time Reverse Current Protection
- Over Temperature Protection
- Surge protection: IEC61000-4-5 exceeds ±80 V on VBUS
- Safety approvals
 - UL 62368-1, 2nd Edition, File no. 20160526-E470128
 - ◆ IEC 62368-1 (ed.2), File no. DK-54536-UL
- ESD protection
 - IEC61000-4-2 contact discharge exceeds 8 kV on VBUS
 - HBM ANSI/ESDA/JEDEC JS-001 Class 2 exceeds 2 kV
 - CDM AEC standard Q100-01 (JESD22-C101E) exceeds 500 V
- Specified from -40 °C to +85 °C ambient temperature

3. Applications

- Notebook and Ultrabook
- USB PD and Type C port/hubs
- Tablet and Smart phone

4. Ordering information

Cable 1. Ordering information							
Type number Topside		Package					
	marking	Name	Description	Version			
NX5P3090UK	X5PT2	WLCSP12	wafer level chip-scale package; 12 bumps; 1.65 x 1.35 x 0.525 mm; 0.4 mm pitch (backside coating included)	SOT1390-5			

4.1 Ordering options

Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
NX5P3090UK	NX5P3090UKZ	WLCSP12	REEL 7" Q1/T1 *SPECIAL MARK CHIPS DP	3000	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

5. Marking

Table 3. Marking		
Line	Marking	Description
A	X5PT2	basic type name
В	mmmmm	wafer lot code (mmmmm)
С	Z5YWW	manufacturing code
		Z = foundry location
		5 = assembly location
		Y = assembly year code
		WW = assembly week code

USB PD and type C current-limited power switch

6. Functional diagram

USB PD and type C current-limited power switch

7. Pinning information

7.1 Pinning

7.2 Pin description

Table 4.Pin description

Symbol	Pin	Description
VBUS	C2, D1, D2	power output; 29 V tolerance
ILIM	A3	current limiter setting. connects a resistor to GND to set the threshold
FAULT	A2	fault condition indicator (open-drain output)
EN	A1	enable input (active HIGH)
GND	B3, C3, D3	ground (0 V)
VINT	B1, C1, B2	power input

Table 5.	Function table	1		
EN	VINT	VBUS	FAULT	Switch
Х	<2.5V	Х	Z	under voltage lockout, switch open
L	2.5V to 5.5V	Х	Z	disabled; switch open
Н	2.5V to 5.5V	VBUS=VINT	Z	enabled; switch closed
Н	2.5V to 5.5V	0V to VINT	L	over-current, clamped current output, switch closed
Н	2.5V to 5.5V	VBUS>VINT+40mV (>4ms)	L	reverse current; switch open
Н	2.5V to 5.5V	Z	L	Over-temperature; switch open

8. Functional description

[1] H = HIGH voltage level; L = LOW voltage level.

8.1 EN Input

When the EN pin is set LOW, the N-channel MOSFET will be disabled, the device will enter low-power mode disabling all protection circuits and setting the FAULT pin high impedance. When EN is set HIGH, all protection circuits will be enabled and then, if no fault conditions exist, the N-channel MOSFET will be turn on. There is a 100 us de-glitch time on EN pin from LOW to HIGH.

8.2 Under-voltage lock-out

Independently of the logic level on the EN pin, the under-voltage lockout (UVLO) circuit disables the N-channel MOSFET and enters low power mode until the input voltage reaches the UVLO turn-on threshold level VUVLO.

8.3 ILIM

The over-current protection circuit's (OCP) trigger value I_{ocp} can be set using an external resistor R_{ILIM} connected between ILIM pin and GND pin. When EN is HIGH and the ILIM pin is pulled to ground, the N-channel MOSFET will be disabled and the FAULT output set LOW. The detailed IOCP setting is given in Section 8.4.

8.4 Over-current protection (OCP)

The device offers over current protection when enabled, three possible over-current conditions can occur. These conditions are:

- Over-current at start-up, I_{SW} > I_{ocp} when enabling the N-channel MOSFET.
- Over-current after enabled, I_{SW} > I_{ocp} when the N-channel MOSFET is already ON.
- Short circuit after enabled, I_{SW} > 10 A (typical).

In the over current condition, because the device clamps the output current rather than completely shut down the switch, the power dissipation on the device might be increased which could lead to over temperature protection (see <u>Section 8.7</u>).

8.4.1 Over-current at start-up

If the device senses a VBUS short to GND or over-current while enabling the N-channel MOSFET, OCP is triggered. It limits the output current to I_{ocp} and after the de-glitch time sets the FAULT output LOW.

8.4.2 Over-current when enabled

If the device senses $I_{SW} > I_{ocp}$ after enabled, OCP is triggered. It limits the output current to I_{ocp} and after the de-glitch time sets the FAULT output LOW. Limiting the output current reduces $V_{O(VOUT)}$.

8.4.3 Short circuit when enabled

If the device senses $I_{SW} > 10$ A after enabled, a short circuit is detected. The device disables the N-channel MOSFET immediately. It then re-enables the N-channel MOSFET and limit the output current to I_{ocp} , and after the de-glitch time the FAULT output is set LOW.

8.5 Reverse-Current protection (RCP)

When the VBUS pin voltage exceeds the input voltage by 40 mV (typical) the device will protect itself from damage by switching off the MOSFET after 4 ms de-glitch time.

When the VBUS pin voltage exceeds the VINT voltage by 100 mV, the device will shutdown the FET immediately without any de-glitch time.

FAULT pin will be set LOW in the reverse-current protection condition.

In the RCP state, when the VBUS voltage drops below VINT voltage, the device will exit the RCP state in 128 us and resume normal operation.

Before normal turn on, the device will always check the RCP condition first, if higher voltage is detected on VBUS pin, it will never turn on the power MOSFET even EN pin is pulled HIGH.

8.6 FAULT output

The FAULT output is an open-drain output that requires an external pull-up resistor. If any of the protection circuits is activated, the FAULT output will be set LOW to indicate a fault has occurred. The FAULT output will return to the high impedance state automatically once the fault condition is removed. An internal delay (de-glitch) circuit for the over-current protection (8 ms typical) and reverse-current protection (4 ms typical) is used when entering fault conditions. This ensures that FAULT is not accidentally asserted. Over-temperature condition will not be deglitched, the FAULT signal will be asserted immediately.

8.7 Over-temperature protection

When EN is HIGH, the device junction temperature exceeds 140 °C, the over-temperature protection (OTP) circuit will disable the N-channel MOSFET and indicate a fault condition by setting the FAULT pin LOW. Any transition on the EN pin will have no effect. Once the device temperature decreases below 115 °C the device will return to the defined state.

NX5P3090

6 of 33

USB PD and type C current-limited power switch

9. Application diagram

USB PD and type C current-limited power switch

10. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
VI	input voltage	VBUS, EN [1]	-0.5	+29	V
		VINT [2]	-0.5	+6	V
		ILIM	-0.5	+6	V
Vo	output voltage	FAULT [1]	-0.5	+6	V
I _{IK}	input clamping current	input EN: $V_{I(EN)} < -0.5 V$	-50	-	mA
		input ILIM: $V_{I(ILIM)} < -0.5 V$	-50	-	mA
I _{I(source)}	input source current	input IILIM	-	1	mA
I _{ОК}	output clamping current	V _O < 0 V	-50	-	mA
I _{SK}	switch clamping current	input VIN: $V_{I(VIN)} < -0.5 V$	-50	-	mA
		output VOUT: V _{O(VOUT)} < -0.5 V	-50	-	mA
I _{SW}	switch current	V _{SW} > -0.5 V [3]	-	3.6	А
T _{j(max)}	maximum junction temperature		-40	+150	°C
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	[4]	-	910	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.

[3] Internally limited.

[4] The (absolute) maximum power dissipation depends on the junction temperature T_j . Higher power dissipation is allowed in conjunction with lower ambient temperatures. The conditions to determine the specified values are $T_{amb} = 25$ °C and the use of a two layer PCB.

11. Recommended operating conditions

Table 7. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
VI	input voltage	VINT	2.5	5.5	V
		EN; VBUS (OFF state)	0	20	V
VO	Output voltage	VBUS	0	5	V
I _{SW}	switch current	$T_j = -40 \text{ °C to } +85 \text{ °C}$	0	3	A
I _{O(sink)}	output sink current	output FAULT	-10	-	mA
R _{ILIM}	current limit resistance	input ILIM [1]	16	140	kΩ
C _{dec}	decoupling capacitance	VIN to GND	0.1	-	μF
T _{amb}	ambient temperature		-40	+85	°C

[1] Current-limit threshold resistor range from ILIM to GND.

12. Thermal characteristics

Table 8. The	able 8. Thermal characteristics					
Symbol	Parameter	Conditions	Тур	Unit		
R _{th(j-a)}	thermal resistance from junction to ambient	[1]	109	K/W		

R_{th(j-a)} is dependent upon board layout. To minimize R_{th(j-a)}, ensure all pins have a solid connection to larger copper layer areas. In multi-layer PCBs, the second layer should be used to create a large heat spreader area below the device. Avoid using solder-stop varnish under the device.

13. Static characteristics

Table 9. Static characteristics

At recommended operating conditions; $V_{I(VINT)} = V_{I(EN)}$, $R_{FAULT} = 10 \text{ k}\Omega$ unless otherwise specified; Voltages are referenced to GND (ground = 0 V). See Figure 10

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
V _{IH}	HIGH-level input voltage	EN input; $V_{I(VINT)} = 2.5 V$ to 5.5 V;	1.2	-	-	V
V _{IL}	LOW-level input voltage	EN input; V_{IVINT} = 2.5 V to 5.5 V;	-	-	0.4	V
lı	input leakage current	EN input; $V_{I(VINT)} = 5.0 V;$	-	-	7.5	μA
I _(VIN)	supply current	VBUS open; $V_{I(VINT)} = 5.0 V$				
		EN = GND (low power mode);	-	0.9	5	μA
		$\text{EN}=\text{V}_{\text{I}(\text{VIN})};\text{R}_{\text{ILIM}}=33\;\text{k}\Omega$	-	196	280	μA
		$EN = V_{I(VIN)}; R_{ILIM} = 16 \; k\Omega$	-	210	290	μA
I _{S(OFF)}	VBUS OFF-State leakage current	$V_{I(VINT)} = 5.0 \text{ V}; V_{I(VBUS)} = 0 \text{ V}; \text{EN} = LOW$	-	1	10	μA
	VINT OFF-state leakage current	$VI(VBUS) = 5.0 V; V_{I(VINT)} = 0 V;$ EN = LOW	-	1	10	μA
I _{S(ON)}	RCP leakage current	$V_{I(VINT)} = 0$ V; $V_{I(VBUS)} = 5$ V; EN = 5 V	-	0.9	10	μA
Rpd	EN pin Pull-down resistance	V _{I(VINT)} = 5 V		1		MΩ
V _{trip}	trip level voltage	RCP; $V_{I(VINT)} = 2.5 \text{ V}$ to 5.5 V	-	40	-	mV
V _{UVLO}	under voltage lockout voltage	VINT pin	-	2.27	2.45	V
V _{hys(UVLO)}	under voltage lockout hysteresis voltage		-	100	-	mV
V _{OL}	LOW-level output voltage	FAULT; I _O = 8 mA	-	-	0.5	V
CI	EN pin		-	13.5	-	pF

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$.

9 of 33

USB PD and type C current-limited power switch

13.1 Graphs

NXP Semiconductors

NX5P3090

USB PD and type C current-limited power switch

NXP Semiconductors

NX5P3090

USB PD and type C current-limited power switch

13.2 Thermal shutdown

Table 10. Thermal shutdown

 $V_{I(VINT)} = V_{I(EN)}$, $R_{FAULT} = 10 \text{ k}\Omega$ unless otherwise specified; Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{th(ots)}	over temperature shutdown threshold temperature	$V_{I(VINT)} = 2.5 \text{ to } 5.5 \text{ V}$	-	140	-	°C
T _{th(otp)hys}	hysteresis of over temperature protection threshold temperature	$V_{I(VINT)}$ = 2.5 to 5.5 V	-	25	-	°C

NX5P3090

12 of 33

13.3 ON resistance

Table 11. ON resistance

 $V_{I(VINT)} = V_{I(EN)}$, $R_{FAULT} = 10 \text{ k}\Omega$ unless otherwise specified; Voltages are referenced to GND (ground = 0 V). See <u>Figure 10</u>

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{ON}	ON resistance	$V_{I(VINT)}$ = 2.5 to 5.5 V; see <u>Figure 11</u>				
		T _{amb} = 25 °C	-	34	37	mΩ
		$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$	-	-	46	mΩ

13.4 ON resistance graphs

13.5 Current limit

Table 12. Current limit

 $V_{I(VINT)} = V_{I(EN)}$, $R_{FAULT} = 10 \text{ k}\Omega$ unless otherwise specified; Voltages are referenced to GND (ground = 0 V). See Figure 10

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
I _{ocp}	over current	$V_{I(VINT)}$ = 2.5 to 5.5 V; T_{amb} = -40 °C to +85 °C;				
	protection current	$R_{ILIM} = 140 \text{ k}\Omega$	330	421	465	mA
		$R_{ILIM} = 100 \text{ k}\Omega$	480	581	625	mA
		$R_{ILIM} = 54 \text{ k}\Omega$	915	1057	1107	mA
		R _{ILIM} = 33 kΩ	1505	1723	1780	mA
		R _{ILIM} = 24.5 kΩ	2085	2330	2398	mA
		$R_{ILIM} = 20 \text{ k}\Omega$	2567	2848	2920	mA
		R _{ILIM} = 16 kΩ	3186	3490	3585	mA
		ILIM shorted to VINT	125	180	220	mA

[1] Typical values are measured at T_{amb} = 25 °C. 1 % tolerance resistor is recommend for R_{ILIM}

 I_{ocp} can be calculated with below equation, $x = R_{ILIM} (k\Omega)$:

$I_{OCP(MAX)} = 49495 x^{-0.948}$	(1)
$I_{OCP(TYP)} = 52775x^{-0.979}$	(2)
$I_{OCP(MIN)} = 57949 x^{-1.042}$	(3)

13.6 Current limit graphs

14. Dynamic characteristics

Table 13. Dynamic characteristics

At recommended operating conditions; $V_{I(VINT)} = V_{I(EN)}$, $R_{FAULT} = 10 \text{ k}\Omega$ unless otherwise specified; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
t _{TLH}	LOW to HIGH output transition time	V_{OUT} ; $C_L = 1 \ \mu$ F; $R_L = 100 \ \Omega$; see Figure 14 and Figure 15				
		$V_{I(VINT)} = 5.0 V$	-	2.5	-	ms
		V _{I(VINT)} = 2.5 V	-	1.4	-	ms
t _{THL} HIGH to LOW output transition time		V_{OUT} ; $C_L = 1 \ \mu$ F; $R_L = 100 \ \Omega$; see Figure 14 and Figure 15				
		$V_{I(VINT)} = 5.0 V$	-	0.2	-	ms
		V _{I(VINT)} = 2.5 V	-	0.2	-	ms
t _{en} enable time		EN to V_{OUT} ; $C_L = 1 \ \mu F$; $R_L = 100 \ \Omega$; see <u>Figure 14</u> and <u>Figure 15</u>				
		$V_{I(VINT)} = 5.0 V$	-	1.5	-	ms
t _{dis} disable time		EN to V_{OUT} ; $C_L = 1 \ \mu F$; $R_L = 100 \ \Omega$; see Figure 14 and Figure 15				
		$V_{I(VINT)} = 5.0 V$	-	13	-	μs
t _{degl}	deglitch time	$\overline{\text{FAULT}}$ in OCP; $V_{I(VINT)} = 5 \text{ V}$	-	8	-	ms
		RCP; FAULT in RCP; $V_{I(VINT)} = 5 V$	-	4	-	ms

[1] Typical values are measured at $T_{amb} = 25 \text{ °C}$.

14.1 Waveform and test circuits

Table 14. Measurement points

Supply voltage	EN Input	Output	
V _{I(VIN)}	V _M	V _X	V _Y
5.0 V	$0.5 \times V_{I(EN)}$	$0.9 \times V_{OH}$	$0.1 \times V_{OH}$

NX5P3090		
Product	data	sheet

NXP Semiconductors

NX5P3090

USB PD and type C current-limited power switch

Table 15. Test data

Supply voltage	EN Input	Load	
V _{EXT}	V _{I(EN)}	CL	RL
5.0 V	0 to V _{I(VIN)}	1 μF	100 Ω

USB PD and type C current-limited power switch

USB PD and type C current-limited power switch

USB PD and type C current-limited power switch

USB PD and type C current-limited power switch

NXP Semiconductors

NX5P3090

USB PD and type C current-limited power switch

15. Package outline

Fig 24. Package outline WLCSP12

All information provided in this document is subject to legal disclaimers.

USB PD and type C current-limited power switch

16. Packing information

16.1 Packing method

Product data sheet

Table 16.Dimensions and quantities

Reel dimensions $d \times w \text{ (mm)}$ [1]	SPQ/PQ (pcs) [2]	Reels per box	Outer box dimensions $I \times w \times h$ (mm)
180 × 8	3000	1	$209\times206\times34$

[1] d = reel diameter; w = tape width.

Packing quantity dependent on specific product type.
 View ordering and availability details at NXP order portal, or contact your local NXP representative.

16.2 Product orientation

16.3 Carrier tape dimensions

Table 17.Carrier tape dimensionsIn accordance with IEC 60286-3.

A ₀ (mm)	B ₀ (mm)	K ₀ (mm)	T (mm)	P ₁ (mm)	W (mm)
1.61 ± 0.05	1.78 ± 0.05	0.73 ± 0.05	0.25 ± 0.02	4.0 ± 0.1	8 + 0.3 / - 0.1

Product data sheet

USB PD and type C current-limited power switch

16.4 Reel dimensions

Table 18. Reel dimensions

In accordance with IEC 60286-3.

A [nom]	W2 [max]	B [min]	C [min]	D [min]
(mm)	(mm)	(mm)	(mm)	(mm)
180	14.4	1.5	12.8	20.2

USB PD and type C current-limited power switch

16.5 Barcode label

Table 19.Barcode label dimensions

Box barcode label $I \times w$ (mm)	Reel barcode label I × w (mm)
100×75	100 × 75