

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China







# Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Designed and tested for highly–sensitive triggering in low-power switching applications.

### **Features**

- High dv/dt
- Gating Current < 200 μA
- Miniature SOT-23 Package for High Density PCB
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

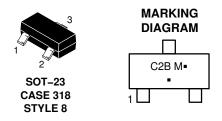
## **MAXIMUM RATINGS** (T<sub>J</sub> = 25°C unless otherwise noted)

| Rating                                                                                                      | Symbol                                | Value          | Unit             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|------------------|
| Peak Repetitive Off–State Voltage (Note 1) $(R_{GK}=IK,T_{J}=-40\ to\ +110^{\circ}C,Sine$ Wave, 50 to 60 Hz | V <sub>DRM,</sub><br>V <sub>RRM</sub> | 200            | V                |
| On-State Current RMS (180° Conduction Angle, T <sub>C</sub> = 80°C)                                         | I <sub>T(RMS)</sub>                   | 0.25           | Α                |
| Peak Non-repetitive Surge Current,<br>T <sub>A</sub> = 25°C, (1/2 Cycle, Sine Wave, 60 Hz)                  | I <sub>TSM</sub>                      | 7.0            | Α                |
| Circuit Fusing Considerations (t = 8.3 ms)                                                                  | I <sup>2</sup> t                      | 0.2            | A <sup>2</sup> s |
| Forward Peak Gate Power (Pulse Width ≤ 1.0 µsec, T <sub>A</sub> = 25°C)                                     | P <sub>GM</sub>                       | 0.1            | W                |
| Forward Average Gate Power (t = 8.3 msec, T <sub>A</sub> = 25°C)                                            | P <sub>G(AV)</sub>                    | 0.02           | W                |
| Forward Peak Gate Current (Pulse Width $\leq$ 20 $\mu$ s, T <sub>A</sub> = 25°C)                            | I <sub>FGM</sub>                      | 0.5            | Α                |
| Reverse Peak Gate Voltage (Pulse Width $\leq 1.0 \ \mu s, \ T_A = 25^{\circ}C)$                             | V <sub>RGM</sub>                      | 8.0            | V                |
| Operating Junction Temperature Range<br>@ Rated V <sub>RRM</sub> and V <sub>DRM</sub>                       | TJ                                    | -40 to<br>+125 | °C               |
| Storage Temperature Range                                                                                   | T <sub>stg</sub>                      | -40 to<br>+150 | °C               |

### THERMAL CHARACTERISTICS

| Characteristic                                            | Symbol          | Max | Unit |
|-----------------------------------------------------------|-----------------|-----|------|
| Total Device Dissipation FR-5 Board T <sub>A</sub> = 25°C | $P_D$           | 225 | mW   |
| Thermal Resistance, Junction-to-Ambient                   | $R_{\theta JA}$ | 380 | °C/W |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. V<sub>DRM</sub> and V<sub>RRM</sub> for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.



### Littelfuse.com

# 0.25 AMP, 200 VOLT SCRs





C2B = Specific Device Code

M = Date Code\*

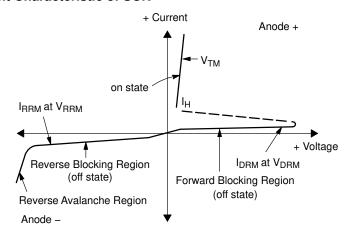
■ = Pb-Free Package (Note: Microdot may be in either location)

\*Date Code orientation and/or overbar may vary de-

pending upon manufacturing location.

| PIN ASSIGNMENT |         |  |  |  |
|----------------|---------|--|--|--|
| 1              | Cathode |  |  |  |
| 2              | Gate    |  |  |  |
| 3              | Anode   |  |  |  |

### **ORDERING INFORMATION**


| Device         | Package             | Shipping              |  |  |  |  |
|----------------|---------------------|-----------------------|--|--|--|--|
| NYC0102BLT1G   | SOT-23<br>(Pb-Free) | 3000 / Tape &<br>Reel |  |  |  |  |
| SZNYC0102BLT1G | SOT-23<br>(Pb-Free) | 3000 / Tape &<br>Reel |  |  |  |  |

# **ELECTRICAL CHARACTERISTICS** ( $T_C = 25$ °C unless otherwise noted.)

| Characteristic                                                                                           |                                                 |                  | Min    | Тур    | Max        | Unit                     |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------|--------|--------|------------|--------------------------|--|
| OFF CHARACTERISTICS                                                                                      |                                                 |                  |        |        |            |                          |  |
| Peak Repetitive Forward Blocking Current ( $V_{DRM} = 200 \text{ V}, R_{GK} = 1 \text{ k}\Omega$ )       | T <sub>C</sub> = 25°C<br>T <sub>C</sub> = 125°C | I <sub>DRM</sub> | _<br>_ | _<br>_ | 1.0<br>100 | μ <b>Α</b><br>μ <b>Α</b> |  |
| Peak Repetitive Reverse Blocking Current $(V_{DRM} = 200 \text{ V}, R_{GK} = 1 \text{ k}\Omega)$         | T <sub>C</sub> = 25°C<br>T <sub>C</sub> = 125°C | I <sub>RRM</sub> | _<br>_ | -<br>- | 1.0<br>100 | μ <b>Α</b><br>μ <b>Α</b> |  |
| ON CHARACTERISTICS                                                                                       |                                                 |                  |        |        |            |                          |  |
| Peak Forward On–State Voltage<br>(I <sub>TM</sub> = 0.4 A, t <sub>p</sub> < 1 ms, T <sub>C</sub> = 25°C) |                                                 | V <sub>TM</sub>  | -      | -      | 1.7        | V                        |  |
| Gate Trigger Current ( $V_D = 12 \text{ V}, R_L = 100 \Omega, T_C = 25^{\circ}\text{C}$ )                |                                                 | I <sub>GT</sub>  | -      | -      | 200        | μΑ                       |  |
| Gate Trigger Voltage ( $V_D = 12 \text{ V}, R_L = 100 \Omega, T_C = 25^{\circ}\text{C}$ )                |                                                 | V <sub>GT</sub>  | -      | -      | 0.8        | V                        |  |
| Holding Current (I <sub>T</sub> = 50 mA, R <sub>GK</sub> = 1 k $\Omega$ , T <sub>C</sub> = 25°C)         |                                                 | lH               | -      | -      | 6.0        | mA                       |  |
| Gate Non-Trigger Voltage $(V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_C = 125^{\circ}\text{C})$         |                                                 | $V_{GD}$         | 0.1    | -      | -          | V                        |  |
| Latching Current (I <sub>G</sub> = 1.0 mA, R <sub>GK</sub> = 1 k $\Omega$ , T <sub>C</sub> = 25°C)       |                                                 | ΙL               | -      | -      | 7.0        | mA                       |  |
| Gate Reverse Voltage (I <sub>RG</sub> = 10 μA)                                                           |                                                 | V <sub>RG</sub>  | 8.0    | -      | -          | V                        |  |
| DYNAMIC CHARACTERISTICS                                                                                  |                                                 |                  |        |        |            | •                        |  |
| Critical Rate of Rise of Off–State Voltage (R <sub>GK</sub> = 1 k $\Omega$ , T <sub>C</sub> = 125°C)     |                                                 | dv/dt            | 200    | _      | -          | V/µs                     |  |
| Critical Rate of Rise of On–State Current ( $I_G = 2xI_{GT}$ 60 Hz, $t_r < 100$ ns, $T_J = 125$ °C)      |                                                 | di/dt            | -      | _      | 50         | A/μs                     |  |

# **Voltage Current Characteristic of SCR**

| Symbol           | Parameter                                 |
|------------------|-------------------------------------------|
| $V_{DRM}$        | Peak Repetitive Off State Forward Voltage |
| I <sub>DRM</sub> | Peak Forward Blocking Current             |
| $V_{RRM}$        | Peak Repetitive Off State Reverse Voltage |
| I <sub>RRM</sub> | Peak Reverse Blocking Current             |
| V <sub>TM</sub>  | Peak on State Voltage                     |
| I <sub>H</sub>   | Holding Current                           |



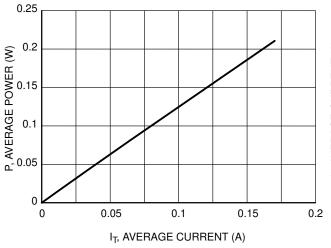



Figure 1. Maximum Average Power vs.
Average Current

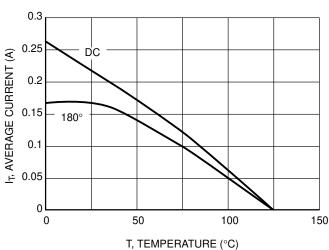



Figure 2. Current Derating

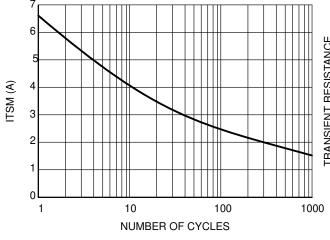



Figure 3. Surge Current ITSM vs. Number of Cycles

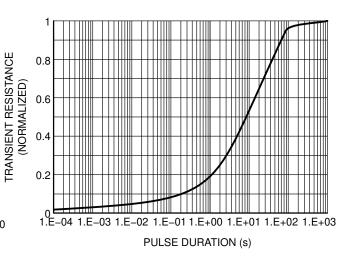



Figure 4. Thermal Response

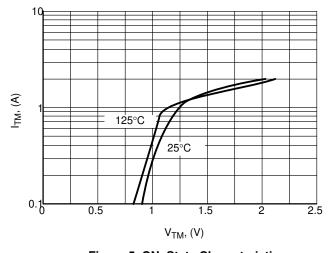



Figure 5. ON-State Characteristics

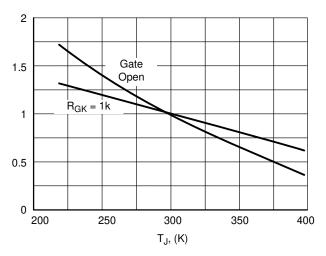
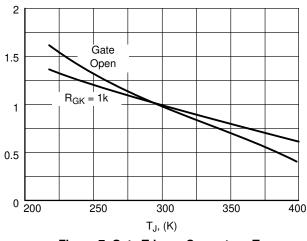
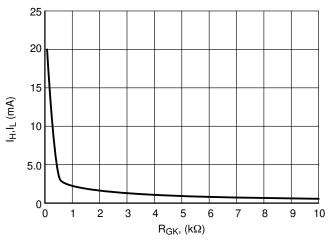




Figure 6. Gate Trigger Current vs. T<sub>J</sub> (Normalized to 25°C)


0.07



0.06 0.05 0.04 0.02 0.01 0 2 4 6 8 10 12 R<sub>GK</sub>, (kΩ)

Figure 7. Gate Trigger Current vs. T<sub>J</sub> (Normalized to 25°C)

Figure 8. Gate Trigger Current vs. R<sub>GK</sub>



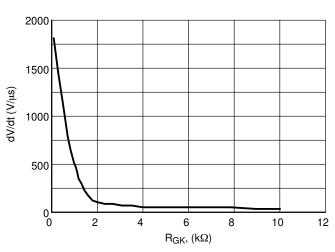



Figure 9. Holding and Latching Current vs.  ${\rm R}_{\rm GK}$ 

Figure 10. dV/dt vs. R<sub>GK</sub>

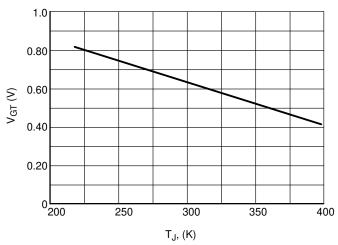
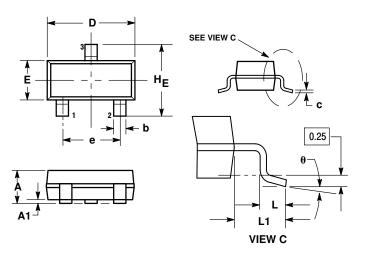




Figure 11. Gate Triggering Voltage vs. T<sub>J</sub>

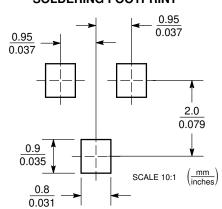
# PACKAGE DIMENSIONS

# SOT-23 (TO-236)] CASE 318-08 **ISSUE AP**



### NOTES:

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCL.
- CONTROLLING DIMENSION: INCH.
  MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
  THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.


|     | MILLIMETERS |      |      | INCHES |       |       |
|-----|-------------|------|------|--------|-------|-------|
| DIM | MIN         | NOM  | MAX  | MIN    | NOM   | MAX   |
| Α   | 0.89        | 1.00 | 1.11 | 0.035  | 0.040 | 0.044 |
| A1  | 0.01        | 0.06 | 0.10 | 0.001  | 0.002 | 0.004 |
| b   | 0.37        | 0.44 | 0.50 | 0.015  | 0.018 | 0.020 |
| С   | 0.09        | 0.13 | 0.18 | 0.003  | 0.005 | 0.007 |
| D   | 2.80        | 2.90 | 3.04 | 0.110  | 0.114 | 0.120 |
| E   | 1.20        | 1.30 | 1.40 | 0.047  | 0.051 | 0.055 |
| е   | 1.78        | 1.90 | 2.04 | 0.070  | 0.075 | 0.081 |
| L   | 0.10        | 0.20 | 0.30 | 0.004  | 0.008 | 0.012 |
| L1  | 0.35        | 0.54 | 0.69 | 0.014  | 0.021 | 0.029 |
| HE  | 2.10        | 2.40 | 2.64 | 0.083  | 0.094 | 0.104 |
| θ   | 0°          |      | 10°  | 0°     |       | 10°   |

STYLE 8:

PIN 1. ANODE

NO CONNECTION CATHODE 2.

# **SOLDERING FOOTPRINT**



Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

### Littelfuse.com