

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Specification

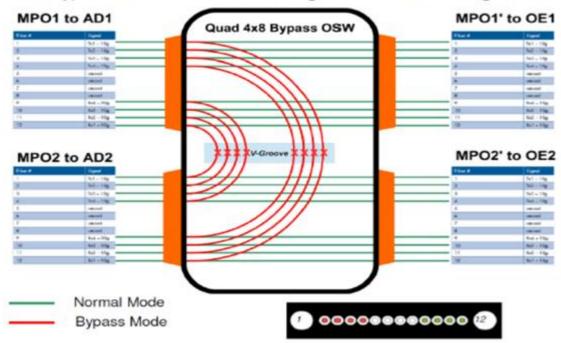
Dual QSFP28 100GBase-SR4 Optical Bypass Module

OBM-D3DH2-F01

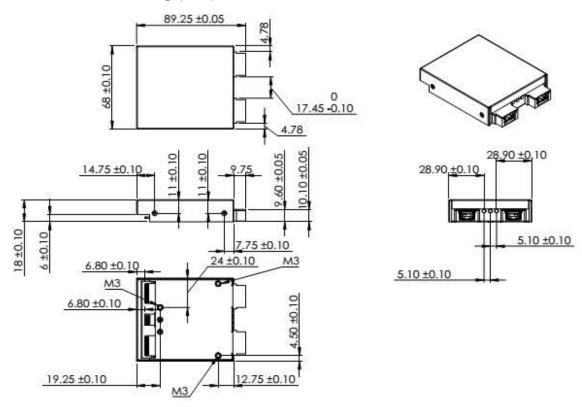
Dual QSFP28 Optical Bypass Module PRODUCT NUMBER: OBM-D3DH2-F01

Product Overview

FormericaOE dual 100G (2*100G) QSFP28 Optical Bypass Module (OBM) is a compact box that contains two QSFP28 optical transceivers and optical switches control circuit board. It can be integrated with I/O ports controllers in a Network Interface Card (NIC). The FormericaOE dual QSFP28 OBM is targeted to inline network system that maintains network connectivity when power failure occurs or system fails, particularly for Data Centers that employ extensive QSFP28 for optical inter connects between servers and switches. FormericaOE Dual QSFP28 OBM supports normal and bypass modes, and can be controlled to perform the block mode. In normal mode, the ports are independent interfaces. In bypass mode, all packets received from one port are transmitted to the adjacent port. In block mode, the module blocks the route. FormericaOE Dual QSFP28 OBM can bypass or block its I/O ports on a host system failure, power off, or upon software request. It can be integrated with any brand of CPU controller. It is suitable for connecting with in-line equipment for power failure or system maintenance. When the in-line unit is not on or is in bypass mode, the relays within the OBM are set to bridge the optical signals directly through the optical switch, completely bypassing the in-line equipment. If the in-line equipment is operating normally, then it supplies power to the switch through a high speed connector PIN. Compact and competitive cost, this module provides excellent performance on your network.


Features

- Reliable Passive Fiber Bypass (Latching)
- Low Return Loss
- Available in 50/125µm Multi Mode Fiber
- PCB Mountable Type
- Fast Ethernet Standard Compliant
- Digital Diagnostic SFF-8472 Rev.10.2 Compliant
- SONET/SDH Standard Compliant
- ➤ Two MPO-MT Adapter
- Class 1 Laser Product Complies with EN 60825-1
- Compliant with CE& FCC Standard
- Compact Format and ROHS Compliant



Block Diagram and Optical Paths

Bypass Mode Between 100G Segment 1 and 100G Segment 2:

Module Outline Drawing (mm)

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Ts	-40		85	°C
Supply Voltage	Vcc	0		5	V

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Case Operating Temperature	Tc	0		70	°C	1
+5.0V Supply Voltage Vcc5		4.75		5.25	V	
+3.3V Supply Voltage	Vcc3	3.10		3.50	V	
Relative Hunidity (non condensation)		5		85	%	
Data Rate		25.78	3125 ± 10	0ppm	Gbps	

Note1 : Please see order information

Electrical Characteristics

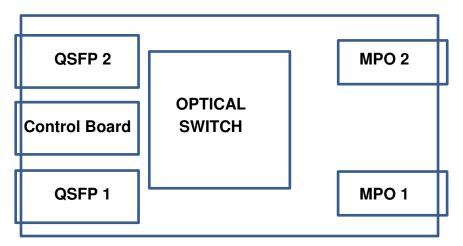
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note	
+5.0V Supply Current	lcc5			100	mA		
+3.3V Supply Current	lcc3			1500	mA		
Т	ransmitter	(Each QS	FP)				
Transmitter Differential Input	V	175		1600	mV	1	
Voltage	V _{DT}						
Transmitter Disable Input-High	V_{DISH}	2		Vcc+0.3	٧		
Transmitter Disable Input-Low	V_{DISL}	-0.3		0.8	V		
Transmitter Fault Pull up Resistor	R _{TX FAULT}	4.7		10	ΚΩ	2	
Transmitter Fault Output-High	V_{TXFH}	2.4		Vcc	٧	2	
Transmitter Fault Output-Low	V_{TXFL}	0		0.5	V	2	
	Receiver (I	Each QSF	P)				
Receiver Differential Output Voltage	V_{DR}	200		900	mV	3	
Receiver LOS Load	R _{RXLOS}	4.7		10	ΚΩ	2	
LOS Output Voltage-High	V _{LOSH}	2.4		Vcc	V	2	
LOS Output Voltage-Low	V_{LOSL}	0		0.5	٧	2	
Optical Switch							
Latching Voltage-High	V_{LATH}	4.75	5	5.25	٧		
Latching Voltage-Low	V_{LATL}	0		0.8	V		
Latching Resistance	R _{LAT}		125		Ω		

Notes:

- 1. Internally AC coupled and terminated to 1000hm differential load.
- 2. Pull up to Vcc on Host Board.
- Internally AC coupled, but requies a 1000hm differential termination at or internal to Serializer/Deserializer.

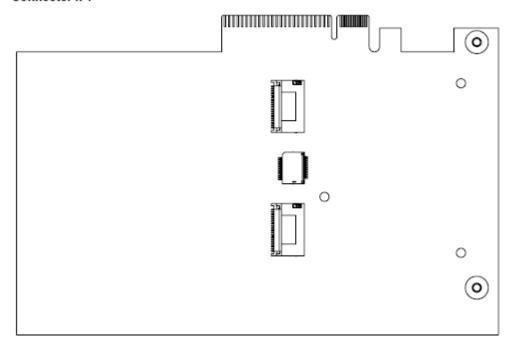
Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note			
Transmitter									
Output Optical Power (Avg.)	Ро	-8.4		2.4	dBm	1			
Optical Extinction Ratio	ER	2			dB				
Center Wavelength	λ _C	840	850	860	nm				
Spectral Width (RMS)	σ			0.65	nm				
	Rec	eiver							
Stress Receiver Sensitivity (OMA)	SRS			4.0	dDm	1.0			
per Lane	SHS			-4.2	dBm	1,2			
Input Optical Wavelength	λ	840		860	DBm				
LOS-Deasserted	P _A			-13	dBm				
LOS-Asserted	P_{D}	-30			dBm				
LOS-Hysteresis	P _A P _D	0.5	2		dB				
	Optical	Switch							
Wavelength Range	λR	670		980	nm				
Insertion Loss	OIL		0.35	2	dB				
Return Loss	ORL	30			dB				
Switch Time				8	ms				
Lifetime			$\geq 10^7$		times				
Latching Resistance	R _{LAT}		125		Ω				

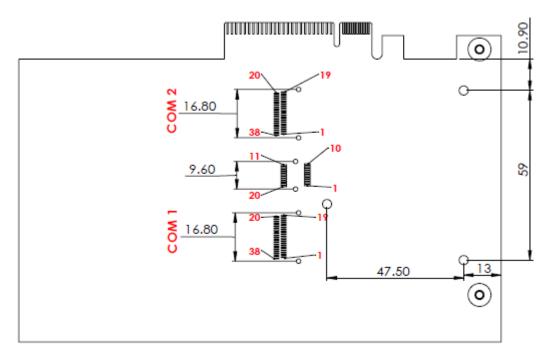

Notes:

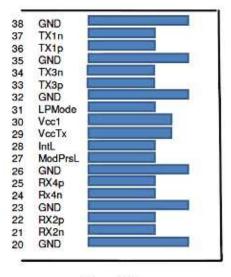
- 1. Normal Mode (Bypass off).
- 2. The sensitivity provided at a BER of 1×10^{-12} or better with an input signal consisting of 25.78125Gb/s, 2^{31} -1 PRBS

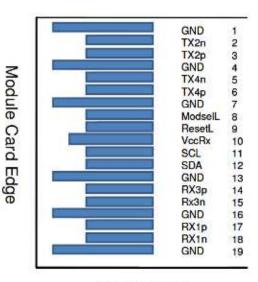
Formerica OptoElectronics Inc.



Block Diagram For 2x100G OBM Top View


Host Board Connector Top View


QSFP Connector x 2 SFP Connector x 1



COM 1 & COM 2 Module Pad Assignments Top View

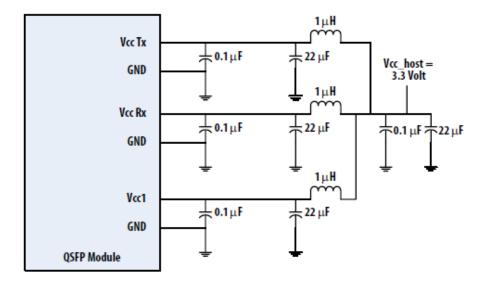
Top Side Viewed From Top

Bottom Side Viewed From Bottom

Page 7

COM 1 & COM 2 Pin Definition

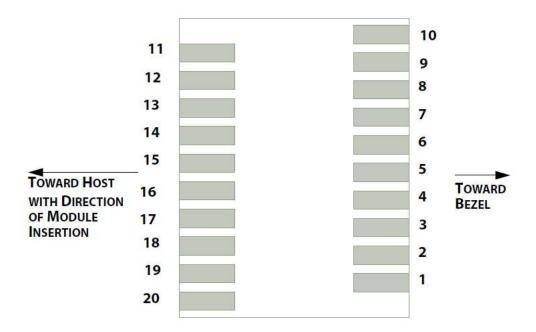
Pin	Logic	Symbol	Description	Plug Sequence	Notes
1		GND	Ground	1	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	3	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	3	
4		GND	Ground	1	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3	
7		GND	Ground	1	1
8	LVTTL-I	ModSelL	Module Select	3	
9	LVTTL-I	ResetL	Module Reset	3	
10		Vcc Rx	+3.3V Power Supply Receiver	2	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	3	
12	LVCMOS-I/O	SDA	2-wire serial interface data	3	
13		GND	Ground	1	2
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3	
15	CML-O	Rx3n	Receiver Inverted Data Output	3	
16		GND	Ground	1	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	3	
18	CML-O	Rx1n	Receiver Inverted Data Output	3	
19		GND	Ground	1	1
20		GND	Ground	1	1
21	CML-O	Rx2n	Receiver Inverted Data Output	3	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	3	
23		GND	Ground	1	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3	
26		GND	Ground	1	1
27	LVTTL-O	ModPrsL	Module Present	3	
28	LVTTL-O	IntL	Interrupt	3	
29		Vcc Tx	+3.3V Power supply transmitter	2	2
30		Vcc1	+3.3V Power supply	2	2
31	LVTTL-I	LPMode	Low Power Mode	3	
32		GND	Ground	1	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3	

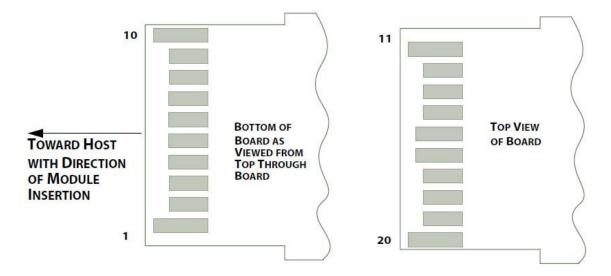


Pin	Logic	Symbol	Description	Plug Sequence	Notes
34	CML-I	Tx3n	Transmitter Inverted Data Input	3	
35		GND	Ground	1	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	3	
37	CML-I	Tx1n	Transmitter Inverted Data Input	3	
38		GND	Ground	1	1

Note 1: GND is the symbol for signal and supply (power) common for the QSFP module. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

Note 2: Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Requirements defined for the host side of the Host Edge Card Connector are listed in Table . Recommended host board power supply filtering is shown in Figure . Vcc Rx Vcc1 and Vcc Tx may be internally connected within the QSFP+ module in any combination. The connector pins are each rated for a maximum current of 500 mA.


Recommended Host Board Power Supply Circuit


Formerica OptoElectronics Inc.

Control Board Pin Definition

Figure: Module Interface to Host

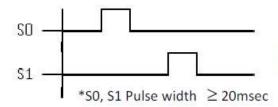
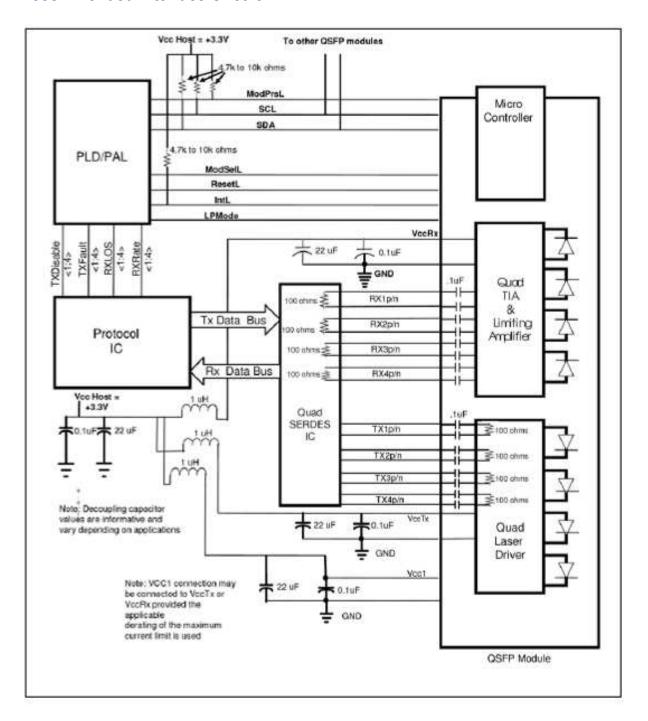


Figure: Module Contact Assignment

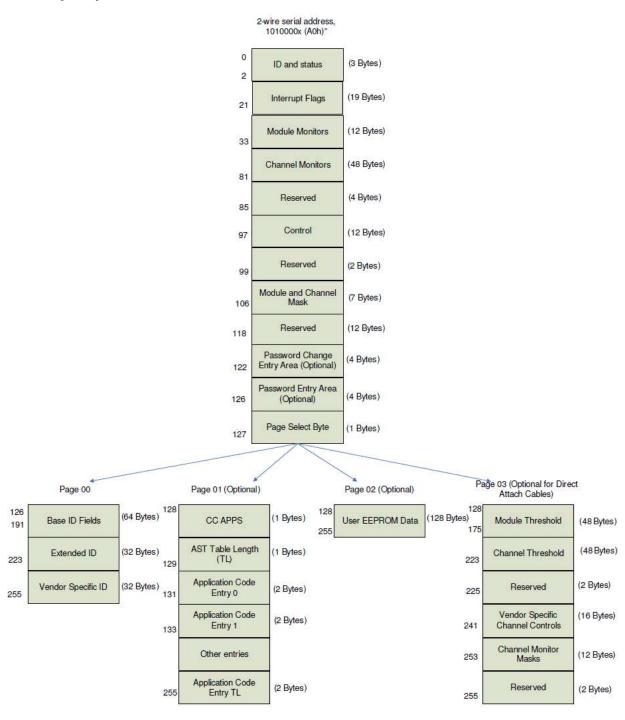
Control Board Pin Descriptions

Pin	Name	Pin Type	Description
1	GND	GND	Ground
2	MON1	Output/LVTTL	Status of Optical Switch 1
3	MON2	Output/LVTTL	Status of Optical Switch 2
4	MON3	Output/LVTTL	Status of Optical Switch 3
5	MON4	Output/LVTTL	Status of Optical Switch 4
6	MOD_ABS	Output/LVTTL	Module absent indicator. It is connected to the module ground. (0: Module present, 1: Module absent)
7	NC	NC	No Connection
8	S0	Input/LVTTL	Change the Optical Switch status
9	S1	Input/LVTTL	Change the Optical Switch status
10	GND	GND	Ground
11	GND	GND	Ground
12	LED1_CTL	Input/LVTTL	Control ON/OFF of LED1. (0:Turn ON, 1: Turn OFF)
13	LED2_CTL	Input/LVTTL	Control ON/OFF of LED2. (0:Turn ON, 1: Turn OFF)
14	LED3_CTL	Input/LVTTL	Control ON/OFF of LED3. (0:Turn ON, 1: Turn OFF)
15	VCC	PWR	3.3V power supply
16	VCC	PWR	3.3V power supply
17	LED4_CTL	Input/LVTTL	Control ON/OFF of LED4. (0:Turn ON, 1: Turn OFF)
18	LED5_CTL	Input/LVTTL	Control ON/OFF of LED5. (0:Turn ON, 1: Turn OFF)
19	NC	NC	No Connection
20	GND	GND	Ground


S0 = High, S1 = Low. To change the OSW state to ON state. S0 = Low, S1 = High. To change the OSW state to OFF state.

Formerica OptoElectronics Inc.

Page 11



Recommended Interface Circuit

Memory Map

