imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

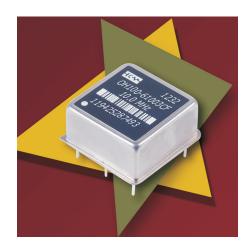
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

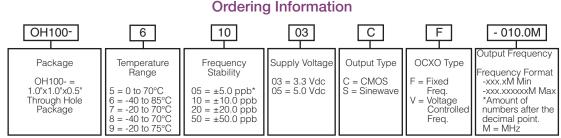
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STRATUM 3E High Stability Oven Stabilized Oscillator OH100 Series


2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

Description

Connor-Winfield's high stability OH100 series are exceptionally precise frequency standards, excellent for use in cellular base stations, test equipment, Synchronous Ethernet, VSAT and Stratum 3E applications


These unique OCXOs and OCVCXOs provide temperature stabilities in the range of ± 5 ppb to ± 50 ppb, over the commercial, extended commercial or the industrial temperature range. Power requirements are 1.1W over the commercial temperature range and 1.5W over the industrial temperature range after warm-up. Additionally, excellent aging is achieved through the use of overtone SC cut crystals.

The OH100 series is available with CMOS logic or Sinewave output along with Electronic Frequency Tuning. These oscillators provide outstanding phase noise that varies depending on frequency. Allan Variance specifications are rated for primary reference standards. Warm up times are on the order of 5 minutes to 0.10 ppm of final frequency.

Features

- Frequency Range: 5 to 40 MHz
- OCXO Fixed Frequency
- OCVCXO Voltage Controlled Frequency
- 3.3 Vdc or 5.0 Vdc Operation
- Available Frequency Stabilities: ±5.0 ppb, ±10.0 ppb, ±20 ppb or ±50 ppb
- Available Temperature Ranges: 0 to 70°C, -20 to 70°C, -20 to 75°C,
- -40 to 70°C or -40 to 85°C
- Low Phase Noise / Phase Jitter
- Output: CMOS Logic or Sinewave
- Package: 1.0" x 1.0" x 0.500"
- RoHS Compliant / Lead Free

* ±5.0 ppb stability models are only available from 0 to 70°C.

Example Part Number:

OH100-61003CF-010.0M = 1.0" x 1.0" x 0.445" package, -40 to 85°C temperature range, ±10.0 ppb frequency stability, 3.3 Vdc supply voltage, CMOS square wave output, fixed output frequency OCXO, 10.0 MHz output frequency.

OH100-52005CV-010.0M = 1.0" x 1.0" x 0.445" package, 0 to 70°C temperature range, ±20.0 ppb frequency stability, 5.0 Vdc supply voltage, CMOS square wave output, voltage controlled output frequency, OCVCXO, 10.0 MHz output frequency.

OH100-71005SV-010.0M = 1.0" x 1.0" x 0.445" package, -20 to 70°C temperature range, ±10.0 ppb frequency stability, 5.0 Vdc supply voltage, Sinewave output, voltage controlled output frequency, OCVCXO, 10.0 MHz output frequency.

Specifications subject to change without notice. All dimensions in inches. © Copyright 2011 The Connor-Winfield Corporation

Bulletin	Cx205
Page	1 of 4
Revision	06
Date	03 Apr 2013
	•

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040

www.conwin.com

Absolute Maximum Ratings

	-			
Minimum	Nominal	Maximum	Units	Notes
-55	-	125	°C	
-0.5	-	4.5	Vdc	
-0.5	-	7.0	Vdc	
-0.5	-	7.0	Vdc	
	-55 -0.5 -0.5	-55 - -0.5 - -0.5 -	-55 - 125 -0.5 - 4.5 -0.5 - 7.0	-55 - 125 °C -0.5 - 4.5 Vdc -0.5 - 7.0 Vdc

Operating Specifications

Description	Operating Sp			1.1.21.5	NISLAS
Parameter (Fa)	Minimum	Nominal	Maximum	Units	Notes
Center Frequency: (Fo)	5	-	40	MHz	
Operating Temperature Range:	0		70	<u>^</u>	
Temperature Code 5	0	-	70	°C	
Temperature Code 6	-40	-	85	°C	
Temperature Code 7	-20	-	70	°C	
Temperature Code 8	-40	-	70	°C	
Temperature Code 9	-20	-	75	°C	
Frequency Calibration:	-0.1	-	0.1	ppm	@ 25°C
Frequency Stability vs. Change in Temperature					
Stability Code 05	-5.0	-	5.0	ppb	1, 2
Stability Code 10	-10.0	-	10.0	ppb	2
Stability Code 20	-20.0	-	20.0	ppb	2
Stability Code 50	-50.0	-	50.0	ppb	2
Frequency Stability vs. Load	-2.0	-	2.0	ppb	±5%
Frequency Stability vs. Voltage	-2.0	-	2.0	ppb	±5%
Aging: Daily:					
5 MHz to 20 MHz	-1.0	-	1.0	ppb/day	3
>20 MHz to 40 MHz	-2.0	-	2.0	ppb/day	3
Aging: First Year:					
5 MHz to 20 MHz	-50	-	50	ppb	
>20 MHz to 40 MHz	-100	-	100	ppb	
Lifetime Tolerance: (20 Years)					
5 MHz to 20 MHz-	-300	-	300	dqq	4
>20 MHz to 40 MHz	-500	-	500	dqq	4
Supply Voltage: (Vcc) (Note: Power supply turr	n-on ramp time mus	t be > 5 ms to 90	% of Vcc.)		
Voltage Code 03	3.13	3.30	3.47	Vdc	5
Voltage Code 05	4.75	5.00	5.25	Vdc	5
Power Consumption: Turn-On					
0 to 70°C Models	-	-	3.00	W	6
-20 to 70°C Models	-	-	3.20	W	6
-20 to 75°C Models	-	-	3.30	W	6
-40 to 85°C Models	-	-	3.80	W	6
Power Consumption: Steady State @ 25°C			0.00		0
0 to 70°C Models	-	-	1.10	W	6
-20 to 70°C Models	-	-	1.15	Ŵ	6
-20 to 75°C Models	_	_	1.20	W	6
-40 to 85°C Models	_	_	1.50	Ŵ	6
Phase Jitter: (BW: 10 Hz to Fo/2)			1.00	**	0
Models Fo: 5 MHz to 20 MHz	_	_	1.0	ps RMS	
Models Fo: >20 MHz to 40 MHz	-	-	2.0	ps RMS	
Short Term Allan Deviation (1s)		1.0E-11	-	RMS	
Start-Up Time:	-	1.06-11	500	ms	
Warm Up Time @ 25°C:	-	-	5	minutes	7
	-	-	0	minutes	1

Notes:

1. ±5.0 ppb stability models are only available from 0 to 70°C.

2. Referenced to the frequency measured @ 25°C.

3. At time of shipment after 48 hours of operation.

4. Inclusive of calibration, operating temperature, supply voltage change, load change and 20 years aging.

5. Minimum "Power On Time" after rail rises from 0 to within +/-5% of Vcc = 1 second. Vcc ramp rate must be <0.3 volts per millisecond.

6. Measured with Vcc = Nominal, in calm air.

7. Measured @ 25° C, within ± 100 ppb, referenced one hour after turn-on

8. To ensure proper operation of OCVCXO's the control voltage input must be biased the nominal control voltage. Failure to bias the Vc input will cause an unstable output condition.

Bulletin	Cx205
Page	2 of 4
Revision	06
Date	03 Apr 2013

Specifications subject to change without notice. All dimensions in inches. © Copyright 2011 The Connor-Winfield Corporation

Phase Noise Characteristics

Typical Phase Noise for OH100-series with CMOS Output

Parameter					Units	Notes
SSB Phase Noise	5 - 12 MHz	>12- 20 MHz	>20 - 30 MHz	>30 - 40 MHz		
@ 1Hz offset	-85	-80	-70	-65	dBc/Hz	
@ 10Hz offset	-115	-110	-100	-95	dBc/Hz	
@ 100Hz offset	-140	-135	-125	-120	dBc/Hz	
@ 1KHz offset	-145	-140	-140	-140	dBc/Hz	
@ 10KHz offset	-150	-150	-150	-150	dBc/Hz	
@ 100KHz offset	-150	-150	-150	-150	dBc/Hz	

OCVCXO Input Characteristics (OCXO Type Code V)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage Range:					
3.3 Vdc Models	0.30	1.65	3.00	V	Vcc = 3.3 Vdc
5.0 Vdc Models	0.50	2.50	4.50	V	Vcc = 5.0 Vdc
Frequency Pullability:	±0.4	-	-	ppm	8
Input Impedance	100K	-	-	Ohms	

CMOS Output Characteristics (Output Code C)

Parameter		Minimum	Nominal	Maximum	Units	Notes
Load		-	15	-	pF	
Output Voltage:						
3.3 Vdc Models H	ligh (Voh)	3.0	-	-	V	
L	low (Vol)	-	-	0.4		
5.0 Vdc Models H	ligh (Voh)	4.7	-	-	V	
L	Low (Vol)	-	-	0.4		
Duty Cycle at 50% c	of Vcc	45	50	55	%	
Rise / Fall Time: 10%	6 to 90%	-	-	6	ns	
Spurious Output		-	-	-80	dBc	

Sinewave Output Characteristics (Output Code S)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	50	-	Ohms	
Output Power	+5.0	-	+10	dBm:	
Harmonics	-	-	-30	dBc	
Spurious	-	-	-80	dBc	

Package Characteristics

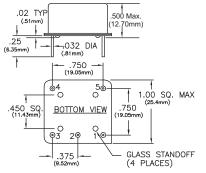
OH100 Package	Hermetically sealed, resistive welded package with grounded case.
---------------	---

Environmental Characteristics

Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Attachment Method PCB	Through Hole Mounted
Resistance to Solder Heat	Per MIL-STD-202G, Method 210, Condition E.
Solder Process	RoHS compliant, lead free. See solder profile.

Bulletin	Cx205
Page	3 of 4
Revision	06
Date	03 Apr 2013

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040


www.conwin.com

Re-Stabilization Time

Off Time	Re stabilization Time
<1 Hour	<2 Hours *
<6 Hour	<12 Hours *
<24 Hour	<48 Hours *
1 to 16 Days	48 Hours + 1/4 Off Time *
>16 Days	<6 Days *
* For a given off time, the time	a required to most daily aging, short term stability requirements

For a given off time, the time required to meet daily aging, short term stability requirements.

Package Outline

Package Marking

Date Code (YYWW) Model Number Output Frequency Serial # Barcode Serial Number

Dimensional Tolerance: ±.005 (.127mm)

Keep Out Area: Under the OCXO is a keep out area, do not place any parts in this area.

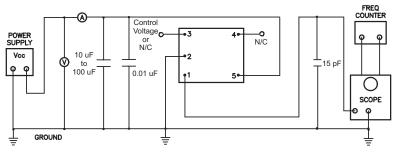
Revision 00,

Revision 01

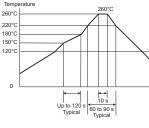
Revision 02

Revision 03

Revision 04,


Revision 05

Revision 06


Attention: System Designers please review Application Note AN2093: System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators. @ www.conwin.com/technologies.html

1

Test Circuit

Meets IPC/JEDEC J-STD-020C

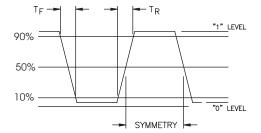
Added application note AN2093 information. 12/07/12

Added +10 dB Max to sinewave output characteristics . 09/18/12

Updated power consumption. 07/27/11

Updated marking information. 08/22/12

Added sinewave models. 03/22/12


Added ±5ppb models. 04/03/13

New issue, 03/01/11.

Pin Connections

- Pin Connection
- 1: Output
- 2: Ground (Case)
- 3: Control Voltage or N/C
- 4: N/C
- 5: Supply Voltage (Vcc)

CMOS Output Waveform

Bulletin	Cx205
Page	4 of 4
Revision	06
Date	03 Apr 2013

Specifications subject to change without notice. All dimensions in inches. © Copyright 2011 The Connor-Winfield Corporation