

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









# LPC2917/19

# **ARM9** microcontroller with CAN and LIN

Rev. 01 — 31 July 2008

**Product data sheet** 

## 1. Introduction

#### 1.1 About this document

This document lists detailed information about the LPC2917/19 device. It focuses on factual information like pinning, characteristics etc. Short descriptions are used to outline the concept of the features and functions. More details and background on developing applications for this device are given in the LPC2917/19 User manual (see <a href="Ref. 1">Ref. 1</a>). No explicit references are made to the User manual.

### 1.2 Intended audience

This document is written for engineers evaluating and/or developing systems, hard- and/or software for the LPC2917/19. Some basic knowledge of ARM processors and architecture and ARM968E-S in particular is assumed (see Ref. 2).

# 2. General description

#### 2.1 Architectural overview

The LPC2917/19 consists of:

- An ARM968E-S processor with real-time emulation support
- An AMBA Advanced High-performance Bus (AHB) for interfacing to the on-chip memory controllers
- Two DTL buses (a universal NXP interface) for interfacing to the interrupt controller and the Power, Clock and Reset Control cluster (also called subsystem)
- Three ARM Peripheral Buses (APB a compatible superset of ARM's AMBA advanced peripheral bus) for connection to on-chip peripherals clustered in subsystems.
- One ARM Peripheral Bus for event router and system control.

The LPC2917/19 configures the ARM968E-S processor in little-endian byte order. All peripherals run at their own clock frequency to optimize the total system power consumption. The AHB2APB bridge used in the subsystems contains a write-ahead buffer one transaction deep. This implies that when the ARM968E-S issues a buffered write action to a register located on the APB side of the bridge, it continues even though the actual write may not yet have taken place. Completion of a second write to the same subsystem will not be executed until the first write is finished.



#### ARM9 microcontroller with CAN and LIN

# 2.2 ARM968E-S processor

The ARM968E-S is a general purpose 32-bit RISC processor, which offers high performance and very low power consumption. The ARM architecture is based on RISC principles, and the instruction set and related decode mechanism are much simpler than those of microprogrammed CISC. This simplicity results in a high instruction throughput and impressive real-time interrupt response from a small and cost-effective controller core.

Amongst the most compelling features of the ARM968E-S are:

- Separate directly connected instruction and data Tightly Coupled Memory (TCM) interfaces
- Write buffers for the AHB and TCM buses.
- Enhanced 16 × 32 multiplier capable of single-cycle MAC operations and 16-bit fixed-point DSP instructions to accelerate signal-processing algorithms and applications.

Pipeline techniques are employed so that all parts of the processing and memory systems can operate continuously. The ARM968E-S is based on the ARMv5TE five-stage pipeline architecture. Typically, in a three-stage pipeline architecture, while one instruction is being executed its successor is being decoded and a third instruction is being fetched from memory. In the five-stage pipeline additional stages are added for memory access and write-back cycles.

The ARM968E-S processor also employs a unique architectural strategy known as Thumb, which makes it ideally suited to high-volume applications with memory restrictions or to applications where code density is an issue.

The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the ARM968E-S processor has two instruction sets:

- Standard 32-bit ARMv5TE set
- 16-bit Thumb set

The Thumb set's 16-bit instruction length allows it to approach twice the density of standard ARM code while retaining most of the ARM's performance advantage over a traditional 16-bit controller using 16-bit registers. This is possible because Thumb code operates on the same 32-bit register set as ARM code.

Thumb code can provide up to 65 % of the code size of ARM, and 160 % of the performance of an equivalent ARM controller connected to a 16-bit memory system.

The ARM968E-S processor is described in detail in the ARM968E-S data sheet Ref. 2.

## 2.3 On-chip flash memory system

The LPC2917/19 includes a 512 kB or 768 kB flash memory system. This memory can be used for both code and data storage. Programming of the flash memory can be accomplished in several ways. It may be programmed in-system via a serial port (e.g., CAN).

#### ARM9 microcontroller with CAN and LIN

# 2.4 On-chip static RAM

In addition to the two 16 kB TCMs the LPC2917/19 includes two static RAM memories: one of 32 kB and one of 16 kB. Both may be used for code and/or data storage.

## 3. Features

#### 3.1 General

- ARM968E-S processor at 80 MHz maximum.
- AHB system bus at 80 MHz.
- On-chip memory:
  - ◆ Two Tightly Coupled Memories (TCM), 16 kB Instruction TCM (ITCM), 16 kB Data TCM (DTCM).
  - ◆ Two separate internal SRAM instances; 32 kB and 16 kB.
  - Up to 768 kB flash program memory.
- Two-channel CAN controller supporting Full-CAN and extensive message filtering.
- Two LIN master controllers with full hardware support for LIN communication.
- Two 550 UARTs with 16-byte TX and RX FIFO depths.
- Three full-duplex queued SPIs with four slave-select lines; 16 bits wide; 8 locations deep; TX FIFO and RX FIFO.
- Four 32-bit timers each containing four capture-and-compare registers linked to I/Os.
- Four 6-channel PWMs with capture and trap functionality.
- 32-bit watchdog with timer change protection, running on safe clock.
- Up to 108 general-purpose I/O pins with programmable pull-up, pull-down or bus keeper.
- Vectored Interrupt Controller (VIC) with 16 priority levels.
- Two 8-channel 10-bit ADCs provide a total of up to 16 analog inputs, with conversion times as low as 2.44 μs per channel. Each channel provides a compare function to minimize interrupts.
- Up to 24 level-sensitive external interrupt pins, including CAN and LIN wake-up features.
- External Static Memory Controller (SMC) with eight memory banks; up to 32-bit data bus; up to 24-bit address bus.
- Processor wake-up from power-down via external interrupt pins; CAN or LIN activity.
- Flexible Reset Generation Unit (RGU) able to control resets of individual modules.
- Flexible Clock Generation Unit (CGU) able to control clock frequency of individual modules:
  - On-chip very low-power ring oscillator; fixed frequency of 0.4 MHz; always on to provide a Safe\_Clock source for system monitoring.
  - On-chip crystal oscillator with a recommended operating range from 10 MHz to 25 MHz - maximum PLL input 15 MHz.
  - ◆ On-chip PLL allows CPU operation up to a maximum CPU rate of 80 MHz.
  - Generation of up to 10 base clocks.
  - Seven fractional dividers.
- Highly configurable system Power Management Unit (PMU):
  - Clock control of individual modules.

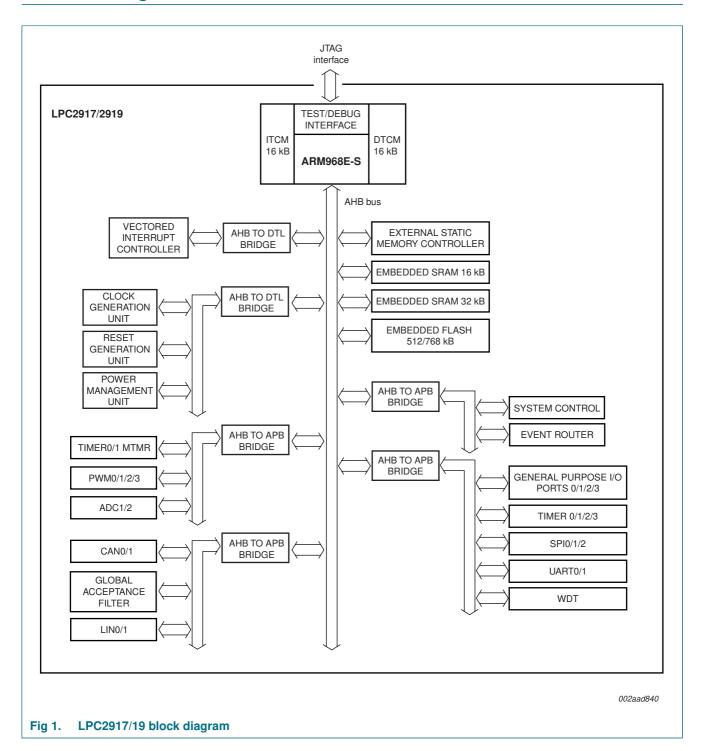
## **ARM9** microcontroller with CAN and LIN

- ◆ Allows minimization of system operating power consumption in any configuration.
- Standard ARM test and debug interface with real-time in-circuit emulator.
- Boundary-scan test supported.
- Dual power supply:
  - ◆ CPU operating voltage: 1.8 V ± 5 %.
  - ◆ I/O operating voltage: 2.7 V to 3.6 V; inputs tolerant up to 5.5 V.
- 144-pin LQFP package.
- -40 °C to 85 °C ambient operating temperature range.

# 4. Ordering information

# Table 1. Ordering information

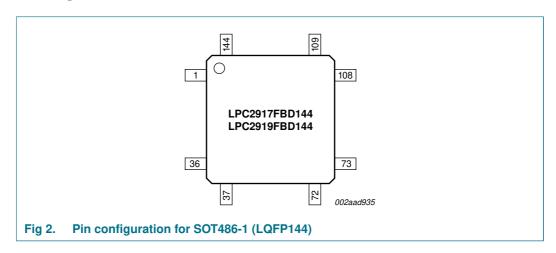
| Type number   | Package | Package                                                                                     |          |  |  |  |  |
|---------------|---------|---------------------------------------------------------------------------------------------|----------|--|--|--|--|
|               | Name    | Description                                                                                 | Version  |  |  |  |  |
| LPC2917FBD144 | LQFP144 | plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4 \text{ mm}$ | SOT486-1 |  |  |  |  |
| LPC2919FBD144 | LQFP144 | plastic low profile quad flat package; 144 leads; body $20 \times 20 \times 1.4 \text{ mm}$ | SOT486-1 |  |  |  |  |


# 4.1 Ordering options

## Table 2. Part options

| Type number   | Flash memory | RAM                    | SMC    | LIN 2.0 | Package |
|---------------|--------------|------------------------|--------|---------|---------|
| LPC2917FBD144 | 512 kB       | 80 kB (including TCMs) | 32-bit | 2       | LQFP144 |
| LPC2919FBD144 | 768 kB       | 80 kB (including TCMs) | 32-bit | 2       | LQFP144 |

#### **ARM9** microcontroller with CAN and LIN


# 5. Block diagram



### ARM9 microcontroller with CAN and LIN

# 6. Pinning information

# 6.1 Pinning



# 6.2 Pin description

# 6.2.1 General description

The LPC2917/19 has up to four ports: two of 32 pins each, one of 28 pins and one of 16 pins. The pin to which each function is assigned is controlled by the SFSP registers in the SCU. The functions combined on each port pin are shown in the pin description tables in this section.

# 6.2.2 LQFP144 pin assignment

Table 3. LQFP144 pin assignment

| Pin name                     | Pin | Description        |            |             |             |
|------------------------------|-----|--------------------|------------|-------------|-------------|
|                              |     | Default function   | Function 1 | Function 2  | Function 3  |
| TDO                          | 1   | IEEE 1149.1 test d | lata out   |             | '           |
| P2[21]/PCAP2[1]/D19          | 2   | GPIO 2, pin 21     | -          | PWM2 CAP1   | EXTBUS D19  |
| P0[24]/TXD1/TXDC1/SCS2[0]    | 3   | GPIO 0, pin 24     | UART1 TXD  | CAN1 TXDC   | SPI2 SCS0   |
| P0[25]/RXD1/RXDC1/SDO2       | 4   | GPIO 0, pin 25     | UART1 RXD  | CAN1 RXDC   | SPI2 SDO    |
| P0[26]/SDI2                  | 5   | GPIO 0, pin 26     | -          | -           | SPI2 SDI    |
| P0[27]/SCK2                  | 6   | GPIO 0, pin 27     | -          | -           | SPI2 SCK    |
| P0[28]/CAP0[0]/MAT0[0]       | 7   | GPIO 0, pin 28     | -          | TIMER0 CAP0 | TIMER0 MAT0 |
| P0[29]/CAP0[1]/MAT0[1]       | 8   | GPIO 0, pin 29     | -          | TIMER0 CAP1 | TIMER0 MAT1 |
| $V_{DD(IO)}$                 | 9   | 3.3 V power supply | for I/O    |             |             |
| P2[22]/PCAP2[2]/D20          | 10  | GPIO 2, pin 22     | -          | PWM2 CAP2   | EXTBUS D20  |
| P2[23]/PCAP3[0]/D21          | 11  | GPIO 2, pin 23     | -          | PWM3 CAP0   | EXTBUS D21  |
| P3[6]/SCS0[3]/PMAT1[0]/TXDL1 | 12  | GPIO 3, pin 6      | SPI0 SCS3  | PWM1 MAT0   | LIN1 TXDL   |
| P3[7]/SCS2[1]/PMAT1[1]/RXDL1 | 13  | GPIO 3, pin 7      | SPI2 SCS1  | PWM1 MAT1   | LIN1 RXDL   |
| P0[30]/CAP0[2]/MAT0[2]       | 14  | GPIO 0, pin 30     | -          | TIMER0 CAP2 | TIMER0 MAT2 |
| P0[31]/CAP0[3]/MAT0[3]       | 15  | GPIO 0, pin 31     | -          | TIMER0 CAP3 | TIMER0 MAT3 |

# ARM9 microcontroller with CAN and LIN

 Table 3.
 LQFP144 pin assignment ...continued

| Pin name                           | Pin | Description           |                                   |                             |                             |
|------------------------------------|-----|-----------------------|-----------------------------------|-----------------------------|-----------------------------|
|                                    |     | Default function      | Function 1                        | Function 2                  | Function 3                  |
| P2[24]/PCAP3[1]/D22                | 16  | GPIO 2, pin 24        | -                                 | PWM3 CAP1                   | EXTBUS D22                  |
| P2[25]/PCAP3[2]/D23                | 17  | GPIO 2, pin 25        | -                                 | PWM3 CAP2                   | EXTBUS D23                  |
| V <sub>DD(CORE)</sub>              | 18  | 1.8 V power suppl     | y for digital core                |                             |                             |
| V <sub>SS(CORE)</sub>              | 19  | ground for digital of | core                              |                             |                             |
| P1[31]/CAP0[1]/MAT0[1]/EI5         | 20  | GPIO 1, pin 31        | TIMER0 CAP1                       | TIMER0 MAT1                 | EXTINT5                     |
| V <sub>SS(IO)</sub>                | 21  | ground for I/O        |                                   |                             |                             |
| P1[30]/CAP0[0]/MAT0[0]/EI4         | 22  | GPIO 1, pin 30        | TIMER0 CAP0                       | TIMER0 MAT0                 | EXTINT4                     |
| P3[8]/SCS2[0]/PMAT1[2]             | 23  | GPIO 3, pin 8         | SPI2 SCS0                         | PWM1 MAT2                   | -                           |
| P3[9]/SDO2/PMAT1[3]                | 24  | GPIO 3, pin 9         | SPI2 SDO                          | PWM1 MAT3                   | -                           |
| P1[29]/CAP1[0]/TRAP0/<br>PMAT3[5]  | 25  | GPIO 1, pin 29        | TIMER1 CAP0,<br>EXT START         | PWM TRAP0                   | PWM3 MAT5                   |
| P1[28]/CAP1[1]/TRAP1/<br>PMAT3[4]  | 26  | GPIO 1, pin 28        | TIMER1 CAP1,<br>ADC1 EXT<br>START | PWM TRAP1                   | PWM3 MAT4                   |
| P2[26]/CAP0[2]/MAT0[2]/EI6         | 27  | GPIO 2, pin 26        | TIMER0 CAP2                       | TIMER0 MAT2                 | EXTINT6                     |
| P2[27]/CAP0[3]/MAT0[3]/EI7         | 28  | GPIO 2, pin 27        | TIMER0 CAP3                       | TIMER0 MAT3                 | EXTINT7                     |
| P1[27]/CAP1[2]/TRAP2/<br>PMAT3[3]  | 29  | GPIO 1, pin 27        | TIMER1 CAP2,<br>ADC2 EXT<br>START | PWM TRAP2                   | PWM3 MAT3                   |
| P1[26]/PMAT2[0]/TRAP3/<br>PMAT3[2] | 30  | GPIO 1, pin 26        | PWM2 MAT0                         | PWM TRAP3                   | PWM3 MAT2                   |
| $V_{DD(IO)}$                       | 31  | 3.3 V power suppl     | y for I/O                         |                             |                             |
| P1[25]/PMAT1[0]/PMAT3[1]           | 32  | GPIO 1, pin 25        | PWM1 MAT0                         | -                           | PWM3 MAT1                   |
| P1[24]/PMAT0[0]/PMAT3[0]           | 33  | GPIO 1, pin 24        | PWM0 MAT0                         | -                           | PWM3 MAT0                   |
| P1[23]/RXD0/CS5                    | 34  | GPIO 1, pin 23        | UART0 RXD                         | -                           | EXTBUS CS5                  |
| P1[22]/TXD0/CS4                    | 35  | GPIO 1, pin 22        | UART0 TXD                         | -                           | EXTBUS CS4                  |
| TMS                                | 36  | IEEE 1149.1 test r    | mode select, pulled               | up internally               |                             |
| TCK                                | 37  | IEEE 1149.1 test of   | clock                             |                             |                             |
| P1[21]/CAP3[3]/CAP1[3]/D7          | 38  | GPIO 1, pin 21        | TIMER3 CAP3                       | TIMER1 CAP3,<br>MSCSS PAUSE | EXTBUS D7                   |
| P1[20]/CAP3[2]/SCS0[1]/D6          | 39  | GPIO 1, pin 20        | TIMER3 CAP2                       | SPI0 SCS1                   | EXTBUS D6                   |
| P1[19]/CAP3[1]/SCS0[2]/D5          | 40  | GPIO 1, pin 19        | TIMER3 CAP1                       | SPI0 SCS2                   | EXTBUS D5                   |
| P1[18]/CAP3[0]/SDO0/D4             | 41  | GPIO 1, pin 18        | TIMER3 CAP0                       | SPI0 SDO                    | EXTBUS D4                   |
| P1[17]/CAP2[3]/SDI0/D3             | 42  | GPIO 1, pin 17        | TIMER2 CAP3                       | SPI0 SDI                    | EXTBUS D3                   |
| V <sub>SS(IO)</sub>                | 43  | ground for I/O        |                                   |                             |                             |
| P1[16]/CAP2[2]/SCK0/D2             | 44  | GPIO 1, pin 16        | TIMER2 CAP2                       | SPI0 SCK                    | EXTBUS D2                   |
| P2[0]/MAT2[0]/TRAP3/D8             | 45  | GPIO 2, pin 0         | TIMER2 MAT0                       | PWM TRAP3                   | EXTBUS D8                   |
| P2[1]/MAT2[1]/TRAP2/D9             | 46  | GPIO 2, pin 1         | TIMER2 MAT1                       | PWM TRAP2                   | EXTBUS D9                   |
| P3[10]/SDI2/PMAT1[4]               | 47  | GPIO 3, pin 10        | SPI2 SDI                          | PWM1 MAT4                   | -                           |
| P3[11]/SCK2/PMAT1[5]               | 48  | GPIO 3, pin 11        | SPI2 SCK                          | PWM1 MAT5                   | -                           |
| P1[15]/CAP2[1]/SCS0[0]/D1          | 49  | GPIO 1, pin 15        | TIMER2 CAP1                       | SPI0 SCS0                   | EXTBUS D1                   |
| P1[14]/CAP2[0]/SCS0[3]/D0          | 50  | GPIO 1, pin 14        | TIMER2 CAP0                       | SPI0 SCS3                   | EXTBUS D0                   |
| Product data cheet                 |     | Pay 01 2              | 1 July 2009                       |                             | © NXP B.V. 2008. All rights |

# ARM9 microcontroller with CAN and LIN

 Table 3.
 LQFP144 pin assignment ...continued

| Pin name                  | Pin | Description           |                       |                      |                                     |
|---------------------------|-----|-----------------------|-----------------------|----------------------|-------------------------------------|
|                           |     | Default function      | Function 1            | Function 2           | Function 3                          |
| P1[13]/EI3/WE_N           | 51  | GPIO 1, pin 13        | EXTINT3               | -                    | EXTBUS WE_N                         |
| P1[12]/EI2/OE_N           | 52  | GPIO 1, pin 12        | EXTINT2               | -                    | EXTBUS OE_N                         |
| $V_{DD(IO)}$              | 53  | 3.3 V power suppl     | y for I/O             |                      |                                     |
| P2[2]/MAT2[2]/TRAP1/D10   | 54  | GPIO 2, pin 2         | TIMER2 MAT2           | PWM TRAP1            | EXTBUS D10                          |
| P2[3]/MAT2[3]/TRAP0/D11   | 55  | GPIO 2, pin 3         | TIMER2 MAT3           | PWM TRAP0            | EXTBUS D11                          |
| P1[11]/SCK1/CS3           | 56  | GPIO 1, pin 11        | SPI1 SCK              | -                    | EXTBUS CS3                          |
| P1[10]/SDI1/CS2           | 57  | GPIO 1, pin 10        | SPI1 SDI              | -                    | EXTBUS CS2                          |
| P3[12]/SCS1[0]/EI4        | 58  | GPIO 3, pin 12        | SPI1 SCS0             | EXTINT4              | -                                   |
| V <sub>SS(CORE)</sub>     | 59  | ground for digital of | core                  |                      |                                     |
| V <sub>DD(CORE)</sub>     | 60  | 1.8 V power suppl     | y for digital core    |                      |                                     |
| P3[13]/SDO1/EI5           | 61  | GPIO 3, pin 13        | SPI1 SDO              | EXTINT5              | -                                   |
| P2[4]/MAT1[0]/EI0/D12     | 62  | GPIO 2, pin 4         | TIMER1 MAT0           | EXTINT0              | EXTBUS D12                          |
| P2[5]/MAT1[1]/EI1/D13     | 63  | GPIO 2, pin 5         | TIMER1 MAT1           | EXTINT1              | EXTBUS D13                          |
| P1[9]/SDO1/RXDL1/CS1      | 64  | GPIO 1, pin 9         | SPI1 SDO              | LIN1 RXDL            | EXTBUS CS1                          |
| V <sub>SS(IO)</sub>       | 65  | ground for I/O        |                       |                      |                                     |
| P1[8]/SCS1[0]/TXDL1/CS0   | 66  | GPIO 1, pin 8         | SPI1 SCS0             | LIN1 TXDL            | EXTBUS CS0                          |
| P1[7]/SCS1[3]/RXD1/A7     | 67  | GPIO 1, pin 7         | SPI1 SCS3             | UART1 RXD            | EXTBUS A7                           |
| P1[6]/SCS1[2]/TXD1/A6     | 68  | GPIO 1, pin 6         | SPI1 SCS2             | UART1 TXD            | EXTBUS A6                           |
| P2[6]/MAT1[2]/EI2/D14     | 69  | GPIO 2, pin 6         | TIMER1 MAT2           | EXTINT2              | EXTBUS D14                          |
| P1[5]/SCS1[1]/PMAT3[5]/A5 | 70  | GPIO 1, pin 5         | SPI1 SCS1             | PWM3 MAT5            | EXTBUS A5                           |
| P1[4]/SCS2[2]/PMAT3[4]/A4 | 71  | GPIO 1, pin 4         | SPI2 SCS2             | PWM3 MAT4            | EXTBUS A4                           |
| TRST_N                    | 72  | IEEE 1149.1 test      | reset NOT; active LO  | DW; pulled up inter  | nally                               |
| RST_N                     | 73  | asynchronous dev      | rice reset; active LO | W; pulled up interna | ally                                |
| V <sub>SS(OSC)</sub>      | 74  | ground for oscillate  | or                    |                      |                                     |
| XOUT_OSC                  | 75  | crystal out for osc   | illator               |                      |                                     |
| XIN_OSC                   | 76  | crystal in for oscill | ator                  |                      |                                     |
| V <sub>DD(OSC)</sub>      | 77  | 1.8 V supply for os   | scillator             |                      |                                     |
| V <sub>SS(PLL)</sub>      | 78  | ground for PLL        |                       |                      |                                     |
| P2[7]/MAT1[3]/EI3/D15     | 79  | GPIO 2, pin 7         | TIMER1 MAT3           | EXTINT3              | EXTBUS D15                          |
| P3[14]/SDI1/EI6/TXDC0     | 80  | GPIO 3, pin 14        | SPI1 SDI              | EXTINT6              | CAN0 TXDC                           |
| P3[15]/SCK1/EI7/RXDC0     | 81  | GPIO 3, pin 15        | SPI1 SCK              | EXTINT7              | CAN0 RXDC                           |
| $V_{DD(IO)}$              | 82  | 3.3 V power suppl     | y for I/O             |                      |                                     |
| P2[8]/PMAT0[0]/SCS0[2]    | 83  | GPIO 2, pin 8         | -                     | PWM0 MAT0            | SPI0 SCS2                           |
| P2[9]/PMAT0[1]/SCS0[1]    | 84  | GPIO 2, pin 9         | -                     | PWM0 MAT1            | SPI0 SCS1                           |
| P1[3]/SCS2[1]/PMAT3[3]/A3 | 85  | GPIO 1, pin 3         | SPI2 SCS1             | PWM3 MAT3            | EXTBUS A3                           |
| P1[2]/SCS2[3]/PMAT3[2]/A2 | 86  | GPIO 1, pin 2         | SPI2 SCS3             | PWM3 MAT2            | EXTBUS A2                           |
| P1[1]/EI1/PMAT3[1]/A1     | 87  | GPIO 1, pin 1         | EXTINT1               | PWM3 MAT1            | EXTBUS A1                           |
| V <sub>SS(CORE)</sub>     | 88  | ground for digital of | core                  |                      |                                     |
| V <sub>DD(CORE)</sub>     | 89  | 1.8 V power suppl     | y for digital core    |                      |                                     |
| P1[0]/EI0/PMAT3[0]/A0     | 90  | GPIO 1, pin 0         | EXTINT0               | PWM3 MAT0            | EXTBUS A0                           |
| LPC2917_19_1              |     |                       |                       |                      | © NXP B.V. 2008. All rights reserve |

# ARM9 microcontroller with CAN and LIN

 Table 3.
 LQFP144 pin assignment ...continued

| Pin name                   | Pin | Description          |                  |                                             |                                       |
|----------------------------|-----|----------------------|------------------|---------------------------------------------|---------------------------------------|
|                            |     | Default function     | Function 1       | Function 2                                  | Function 3                            |
| P2[10]/PMAT0[2]/SCS0[0]    | 91  | GPIO 2, pin 10       | -                | PWM0 MAT2                                   | SPI0 SCS0                             |
| P2[11]/PMAT0[3]/SCK0       | 92  | GPIO 2, pin 11       | -                | PWM0 MAT3                                   | SPI0 SCK                              |
| P0[0]/TXDC0/D24            | 93  | GPIO 0, pin 0        | -                | CAN0 TXDC                                   | EXTBUS D24                            |
| V <sub>SS(IO)</sub>        | 94  | ground for I/O       |                  |                                             |                                       |
| P0[1]/RXDC0/D25            | 95  | GPIO 0, pin 1        | -                | CAN0 RXDC                                   | EXTBUS D25                            |
| P0[2]/PMAT0[0]/D26         | 96  | GPIO 0, pin 2        | -                | PWM0 MAT0                                   | EXTBUS D26                            |
| P0[3]/PMAT0[1]/D27         | 97  | GPIO 0, pin 3        | -                | PWM0 MAT1                                   | EXTBUS D27                            |
| P3[0]/PMAT2[0]/CS6         | 98  | GPIO 3, pin 0        | -                | PWM2 MAT0                                   | EXTBUS CS6                            |
| P3[1]/PMAT2[1]/CS7         | 99  | GPIO 3, pin 1        | -                | PWM2 MAT1                                   | EXTBUS CS7                            |
| P2[12]/PMAT0[4]/SDI0       | 100 | GPIO 2, pin 12       | -                | PWM0 MAT4                                   | SPI0 SDI                              |
| P2[13]/PMAT0[5]/SDO0       | 101 | GPIO 2, pin 13       | -                | PWM0 MAT5                                   | SPI0 SDO                              |
| P0[4]/PMAT0[2]/D28         | 102 | GPIO 0, pin 4        | -                | PWM0 MAT2                                   | EXTBUS D28                            |
| P0[5]/PMAT0[3]/D29         | 103 | GPIO 0, pin 5        | -                | PWM0 MAT3                                   | EXTBUS D29                            |
| $V_{DD(IO)}$               | 104 | 3.3 V power supply   | for I/O          |                                             |                                       |
| P0[6]/PMAT0[4]/D30         | 105 | GPIO 0, pin 6        | -                | PWM0 MAT4                                   | EXTBUS D30                            |
| P0[7]/PMAT0[5]/D31         | 106 | GPIO 0, pin 7        | -                | PWM0 MAT5                                   | EXTBUS D31                            |
| V <sub>DDA(ADC3V3)</sub>   | 107 | 3.3 V power supply   | for ADC          |                                             |                                       |
| JTAGSEL                    | 108 |                      |                  | I selects the ARM de<br>d flash programming | ebug mode;<br>ı; pulled up internally |
| n.c.                       | 109 | not connected        |                  |                                             |                                       |
| VREFP                      | 110 | HIGH reference for   | ADC              |                                             |                                       |
| VREFN                      | 111 | LOW reference for    | ADC              |                                             |                                       |
| P0[8]/IN1[0]/TXDL0/A20     | 112 | GPIO 0, pin 8        | ADC1 IN0         | LIN0 TXDL                                   | EXTBUS A20                            |
| P0[9]/IN1[1]/RXDL0/A21     | 113 | GPIO 0, pin 9        | ADC1 IN1         | LIN0 RXDL                                   | EXTBUS A21                            |
| P0[10]/IN1[2]/PMAT1[0]/A8  | 114 | GPIO 0, pin 10       | ADC1 IN2         | PWM1 MAT0                                   | EXTBUS A8                             |
| P0[11]/IN1[3]/PMAT1[1]/A9  | 115 | GPIO 0, pin 11       | ADC1 IN3         | PWM1 MAT1                                   | EXTBUS A9                             |
| P2[14]/PCAP0[0]/BLS0       | 116 | GPIO 2, pin 14       | -                | PWM0 CAP0                                   | EXTBUS BLS0                           |
| P2[15]/PCAP0[1]/BLS1       | 117 | GPIO 2, pin 15       | -                | PWM0 CAP1                                   | EXTBUS BLS1                           |
| P3[2]/MAT3[0]/PMAT2[2]     | 118 | GPIO 3, pin 2        | TIMER3 MAT0      | PWM2 MAT2                                   | -                                     |
| V <sub>SS(IO)</sub>        | 119 | ground for I/O       |                  |                                             |                                       |
| P3[3]/MAT3[1]/PMAT2[3]     | 120 | GPIO 3, pin 3        | TIMER3 MAT1      | PWM2 MAT3                                   | -                                     |
| P0[12]/IN1[4]/PMAT1[2]/A10 | 121 | GPIO 0, pin 12       | ADC1 IN4         | PWM1 MAT2                                   | EXTBUS A10                            |
| P0[13]/IN1[5]/PMAT1[3]/A11 | 122 | GPIO 0, pin 13       | ADC1 IN5         | PWM1 MAT3                                   | EXTBUS A11                            |
| P0[14]/IN1[6]/PMAT1[4]/A12 | 123 | GPIO 0, pin 14       | ADC1 IN6         | PWM1 MAT4                                   | EXTBUS A12                            |
| P0[15]/IN1[7]/PMAT1[5]/A13 | 124 | GPIO 0, pin 15       | ADC1 IN7         | PWM1 MAT5                                   | EXTBUS A13                            |
| P0[16]IN2[0]/TXD0/A22      | 125 | GPIO 0, pin 16       | ADC2 IN0         | UART0 TXD                                   | EXTBUS A22                            |
| P0[17]/IN2[1]/RXD0/A23     | 126 | GPIO 0, pin 17       | ADC2 IN1         | UART0 RXD                                   | EXTBUS A23                            |
| V <sub>DD(CORE)</sub>      | 127 | 1.8 V power supply   | for digital core |                                             |                                       |
| V <sub>SS(CORE)</sub>      | 128 | ground for digital c | ore              |                                             |                                       |
| P2[16]/TXD1/PCAP0[2]/BLS2  | 129 | GPIO 2, pin 16       | UART1 TXD        | PWM0 CAP2                                   | EXTBUS BLS2                           |

#### ARM9 microcontroller with CAN and LIN

Table 3. LQFP144 pin assignment ...continued

| Pin name                     | Pin | Description        |                       |            |             |
|------------------------------|-----|--------------------|-----------------------|------------|-------------|
|                              |     | Default function   | Function 1            | Function 2 | Function 3  |
| P2[17]/RXD1/PCAP1[0]/BLS3    | 130 | GPIO 2, pin 17     | UART1 RXD             | PWM1 CAP0  | EXTBUS BLS3 |
| $V_{DD(IO)}$                 | 131 | 3.3 V power supply | for I/O               |            |             |
| P0[18]/IN2[2]/PMAT2[0]/A14   | 132 | GPIO 0, pin 18     | ADC2 IN2              | PWM2 MAT0  | EXTBUS A14  |
| P0[19]/IN2[3]/PMAT2[1]/A15   | 133 | GPIO 0, pin 19     | ADC2 IN3              | PWM2 MAT1  | EXTBUS A15  |
| P3[4]/MAT3[2]/PMAT2[4]/TXDC1 | 134 | GPIO 3, pin 4      | TIMER3 MAT2           | PWM2 MAT4  | CAN1 TXDC   |
| P3[5]/MAT3[3]/PMAT2[5]/RXDC1 | 135 | GPIO 3, pin 5      | TIMER3 MAT3           | PWM2 MAT5  | CAN1 RXDC   |
| P2[18]/PCAP1[1]/D16          | 136 | GPIO 2, pin 18     | -                     | PWM1 CAP1  | EXTBUS D16  |
| P2[19]/PCAP1[2]/D17          | 137 | GPIO 2, pin 19     | -                     | PWM1 CAP2  | EXTBUS D17  |
| P0[20]/IN2[4]/PMAT2[2]/A16   | 138 | GPIO 0, pin 20     | ADC2 IN4              | PWM2 MAT2  | EXTBUS A16  |
| P0[21]/IN2[5]/PMAT2[3]/A17   | 139 | GPIO 0, pin 21     | ADC2 IN5              | PWM2 MAT3  | EXTBUS A17  |
| P0[22]/IN2[6]/PMAT2[4]/A18   | 140 | GPIO 0, pin 22     | ADC2 IN6              | PWM2 MAT4  | EXTBUS A18  |
| V <sub>SS(IO)</sub>          | 141 | ground for I/O     |                       |            |             |
| P0[23]/IN2[7]/PMAT2[5]/A19   | 142 | GPIO 0, pin 23     | ADC2 IN7              | PWM2 MAT5  | EXTBUS A19  |
| P2[20]/PCAP2[0]/D18          | 143 | GPIO 2, pin 20     | -                     | PWM2 CAP0  | EXTBUS D18  |
| TDI                          | 144 | IEEE 1149.1 data   | in, pulled up interna | ılly       |             |

# 7. Functional description

# 7.1 Reset, debug, test and power description

## 7.1.1 Reset and power-up behavior

The LPC2917/19 contains external reset input and internal power-up reset circuits. This ensures that a reset is extended internally until the oscillators and flash have reached a stable state. See Section 11 for trip levels of the internal power-up reset circuit<sup>1</sup>. See Section 12 for characteristics of the several start-up and initialization times. Table 4 shows the reset pin.

Table 4. Reset pin

| Symbol | Direction | Description                                            |
|--------|-----------|--------------------------------------------------------|
| RST_N  | IN        | external reset input, active LOW; pulled up internally |

At activation of the RST\_N pin the JTAGSEL pin is sensed as logic LOW. If this is the case the LPC2917/19 is assumed to be connected to debug hardware, and internal circuits reprogram the source for the BASE\_SYS\_CLK to be the crystal oscillator instead of the Low-Power Ring Oscillator (LP\_OSC). This is required because the clock rate when running at LP\_OSC speed is too low for the external debugging environment.

## 7.1.2 Reset strategy

The LPC2917/19 contains a central module, the Reset Generation Unit (RGU) in the Power, Clock and Reset SubSystem (PCRSS), which controls all internal reset signals towards the peripheral modules. The RGU provides individual reset control as well as the monitoring functions needed for tracing a reset back to source.

LPC2917\_19\_1 © NXP B.V. 2008. All rights reserved.

Only for 1.8 V power sources

#### ARM9 microcontroller with CAN and LIN

## 7.1.3 IEEE 1149.1 interface pins (JTAG boundary-scan test)

The LPC2917/19 contains boundary-scan test logic according to IEEE 1149.1, also referred to in this document as JTAG. The boundary-scan test pins can be used to connect a debugger probe for the embedded ARM processor. Pin JTAGSEL selects between boundary-scan mode and debug mode. <u>Table 5</u> shows the boundary- scan test pins.

Table 5. IEEE 1149.1 boundary-scan test and debug interface

|         | <u> </u>                                                                                                                                       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol  | Description                                                                                                                                    |
| JTAGSEL | TAP controller select input. LOW-level selects ARM debug mode and HIGH-level selects boundary scan and flash programming; pulled up internally |
| TRST_N  | test reset input; pulled up internally (active LOW)                                                                                            |
| TMS     | test mode select input; pulled up internally                                                                                                   |
| TDI     | test data input, pulled up internally                                                                                                          |
| TDO     | test data output                                                                                                                               |
| TCK     | test clock input                                                                                                                               |
|         |                                                                                                                                                |

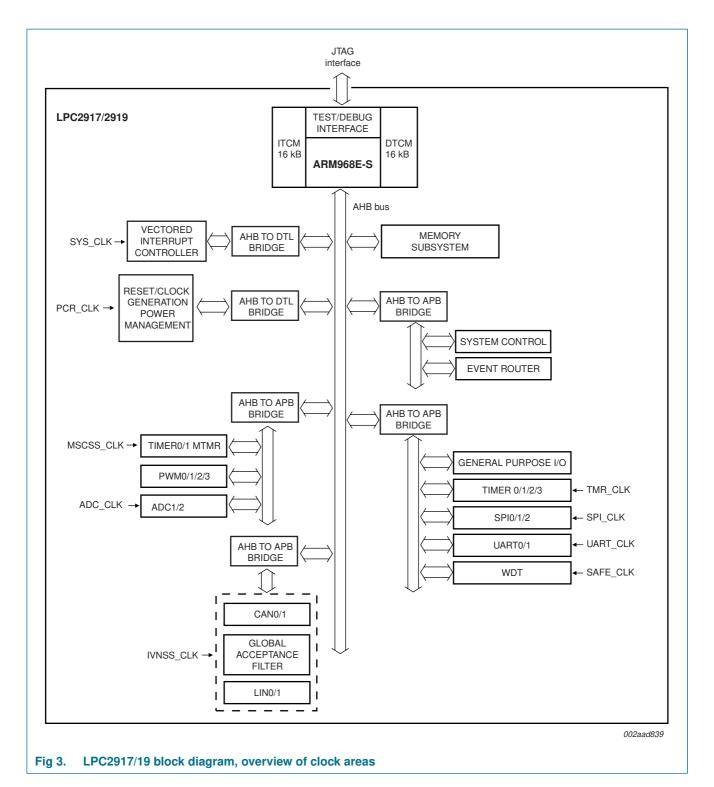
# 7.1.4 Power supply pins description

Table 6 shows the power supply pins.

Table 6. Power supplies

| Symbol                          | Description                                |
|---------------------------------|--------------------------------------------|
| $V_{DD(CORE)}$                  | digital core supply 1.8 V                  |
| $V_{SS(CORE)}$                  | digital core ground (digital core, ADC1/2) |
| $V_{\text{DD(IO)}}$             | I/O pins supply 3.3 V                      |
| $V_{SS(IO)}$                    | I/O pins ground                            |
| $V_{DD(OSC)}$                   | oscillator and PLL supply                  |
| $V_{SS(OSC)}$                   | oscillator ground                          |
| $V_{\text{DDA}(\text{ADC3V3})}$ | ADC1/2 3.3 V supply                        |
| $V_{SS(PLL)}$                   | PLL ground                                 |

## 7.2 Clocking strategy


#### 7.2.1 Clock architecture

The LPC2917/19 contains several different internal clock areas. Peripherals like Timers, SPI, UART, CAN and LIN have their own individual clock sources called Base Clocks. All base clocks are generated by the Clock Generation Unit (CGU). They may be unrelated in frequency and phase and can have different clock sources within the CGU.

The system clock for the CPU and AHB Bus infrastructure has its own base clock. This means most peripherals are clocked independently from the system clock. See <u>Figure 3</u> for an overview of the clock areas within the device.

Within each clock area there may be multiple branch clocks, which offers very flexible control for power-management purposes. All branch clocks are outputs of the Power Management Unit (PMU) and can be controlled independently. Branch clocks derived from the same base clock are synchronous in frequency and phase. See <a href="Section 8.8">Section 8.8</a> for more details of clock and power control within the device.

#### ARM9 microcontroller with CAN and LIN



## 7.2.2 Base clock and branch clock relationship

The next table contains an overview of all the base blocks in the LPC2917/19 and their derived branch clocks. A short description is given of the hardware parts that are clocked with the individual branch clocks. In relevant cases more detailed information can be

## **ARM9** microcontroller with CAN and LIN

found in the specific subsystem description. Some branch clocks have special protection since they clock vital system parts of the device and should (for example) not be switched off. See Section 8.8.6 for more details of how to control the individual branch clocks.

Table 7. Base clock and branch clock overview

| Base clock     | Branch clock name      | Parts of the device clocked by this branch clock | Remark     |
|----------------|------------------------|--------------------------------------------------|------------|
| BASE_SAFE_CLK  | CLK_SAFE               | watchdog timer                                   | <u>[1]</u> |
| BASE_SYS_CLK   | CLK_SYS_CPU            | ARM968E-S and TCMs                               |            |
|                | CLK_SYS_SYS            | AHB bus infrastructure                           |            |
|                | CLK_SYS_PCRSS          | AHB side of bridge in PCRSS                      |            |
|                | CLK_SYS_FMC            | Flash Memory Controller                          |            |
|                | CLK_SYS_RAM0           | Embedded SRAM Controller 0 (32 kB)               |            |
|                | CLK_SYS_RAM1           | Embedded SRAM Controller 1 (16 kB)               |            |
|                | CLK_SYS_SMC            | External Static Memory<br>Controller             |            |
|                | CLK_SYS_GESS           | General Subsystem                                |            |
|                | CLK_SYS_VIC            | Vectored Interrupt Controller                    |            |
|                | CLK_SYS_PESS           | Peripheral Subsystem                             | [2] [4]    |
|                | CLK_SYS_GPIO0          | GPIO bank 0                                      |            |
|                | CLK_SYS_GPIO1          | GPIO bank 1                                      |            |
|                | CLK_SYS_GPIO2          | GPIO bank 2                                      |            |
|                | CLK_SYS_GPIO3          | GPIO bank 3                                      |            |
|                | CLK_SYS_IVNSS_A        | AHB side of bridge of IVNSS                      |            |
| BASE_PCR_CLK   | CLK_PCR_SLOW           | PCRSS, CGU, RGU and PMU logic clock              | [1], [3]   |
| BASE_IVNSS_CLK | CLK_IVNSS_APB          | APB side of the IVNSS                            |            |
|                | CLK_IVNSS_CANCA        | CAN controller Acceptance Filter                 |            |
|                | CLK_IVNSS_CANC0        | CAN channel 0                                    |            |
|                | CLK_IVNSS_CANC1        | CAN channel 1                                    |            |
|                | CLK_IVNSS_LIN0         | LIN channel 0                                    |            |
|                | CLK_IVNSS_LIN1         | LIN channel 1                                    |            |
| BASE_MSCSS_CLK | CLK_MSCSS_APB          | APB side of the MSCSS                            |            |
|                | CLK_MSCSS_MTMR0        | Timer 0 in the MSCSS                             |            |
|                | CLK_MSCSS_MTMR1        | Timer 1 in the MSCSS                             |            |
|                | CLK_MSCSS_PWM0         | PWM 0                                            |            |
|                | CLK_MSCSS_PWM1         | PWM 0                                            |            |
|                | CLK_MSCSS_PWM2         | PWM 0                                            |            |
|                | CLK_MSCSS_PWM3         | PWM 0                                            |            |
|                | CLK_MSCSS_ADC1_A<br>PB | APB side of ADC 1                                |            |
|                | CLK_MSCSS_ADC2_A<br>PB | APB side of ADC 2                                |            |

LPC2917/19 **NXP Semiconductors** 

#### ARM9 microcontroller with CAN and LIN

| Table 7.     | Base clock and | d branch clock overview                 | continued                                               |  |  |
|--------------|----------------|-----------------------------------------|---------------------------------------------------------|--|--|
| Base clock   |                | Branch clock name                       | Parts of the device clocked by Rem<br>this branch clock |  |  |
| BASE_UA      | RT_CLK         | CLK_UART0                               | UART 0 interface clock                                  |  |  |
|              |                | CLK_UART1                               | UART 1 interface clock                                  |  |  |
| BASE_SP      | I_CLK          | CLK_SPI0                                | SPI 0 interface clock                                   |  |  |
|              | CLK_SPI1       | SPI 1 interface clock                   |                                                         |  |  |
|              |                | CLK_SPI2                                | SPI 2 interface clock                                   |  |  |
| BASE_TM      | IR_CLK         | CLK_TMR0                                | Timer 0 clock for counter part                          |  |  |
|              |                | CLK_TMR1                                | Timer 1 clock for counter part                          |  |  |
|              |                | CLK_TMR2                                | Timer 2 clock for counter part                          |  |  |
|              |                | CLK_TMR3                                | Timer 3 clock for counter part                          |  |  |
| BASE_ADC_CLK | CLK_ADC1       | Control of ADC 1, capture sample result |                                                         |  |  |
|              |                | CLK_ADC2                                | Control of ADC 2, capture sample result                 |  |  |

BASE CLK TESTSHELL CLK TESTSHELL IP

# **Block description**

# 8.1 Flash memory controller

#### 8.1.1 Overview

The Flash Memory Controller (FMC) interfaces to the embedded flash memory for two tasks:

- · Providing memory data transfer
- Memory configuration via triggering, programming and erasing

The flash memory has a 128-bit wide data interface and the flash controller offers two 128-bit buffer lines to improve system performance. The flash has to be programmed initially via JTAG. In-system programming must be supported by the bootloader. In-application programming is possible. Flash memory contents can be protected by disabling JTAG access. Suspension of burning or erasing is not supported.

The key features are:

- · Programming by CPU via AHB
- · Programming by external programmer via JTAG
- JTAG access protection
- · Burn-finished and erase-finished interrupt

<sup>[1]</sup> This clock is always on (cannot be switched off for system safety reasons)

<sup>[2]</sup> In the peripheral subsystem parts of the Timers, watchdog timer, SPI and UART have their own clock source. See Section 8.4 for details.

In the Power Clock and Reset Control subsystem parts of the CGU, RGU PMU have their own clock source. See Section 8.8 for details.

<sup>[4]</sup> The clock should remain activated when system wake-up on timer or UART is required.

#### ARM9 microcontroller with CAN and LIN

## 8.1.2 Description

After reset flash initialization is started, which takes  $t_{\text{init}}$  time, see Section 12. During this initialization flash access is not possible and AHB transfers to flash are stalled, blocking the AHB bus.

During flash initialization the index sector is read to identify the status of the JTAG access protection and sector security. If JTAG access protection is active the flash is not accessible via JTAG. ARM debug facilities are disabled to protect the flash memory contents against unwanted reading out externally. If sector security is active only the concerned sections are read.

Flash can be read synchronously or asynchronously to the system clock. In synchronous operation the flash goes into standby after returning the read data. Started reads cannot be stopped, and speculative reading and dual buffering are therefore not supported.

With asynchronous reading, transfer of the address to the flash and of read data from the flash is done asynchronously, giving the fastest possible response time. Started reads can be stopped, so speculative reading and dual buffering are supported.

Buffering is offered because the flash has a 128-bit wide data interface while the AHB interface has only 32 bits. With buffering a buffer line holds the complete 128-bit flash word, from which four words can be read. Without buffering every AHB data port read starts a flash read. A flash read is a slow process compared to the minimum AHB cycle time, so with buffering the average read time is reduced. This can improve system performance.

With single buffering the most recently read flash word remains available until the next flash read. When an AHB data-port read transfer requires data from the same flash word as the previous read transfer, no new flash read is done and the read data is given without wait cycles.

When an AHB data-port read transfer requires data from a different flash word to that involved in the previous read transfer, a new flash read is done and wait states are given until the new read data is available.

With dual buffering a secondary buffer line is used, the output of the flash being considered as the primary buffer. On a primary buffer hit data can be copied to the secondary buffer line, which allows the flash to start a speculative read of the next flash word.

Both buffer lines are invalidated after:

- Initialization
- · Configuration-register access
- · Data-latch reading
- Index-sector reading

The modes of operation are listed in Table 8.

#### ARM9 microcontroller with CAN and LIN

Table 8. Flash read modes

| Synchronous timing                   |                                                                                                                                                                      |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No buffer line                       | for single (non-linear) reads; one flash word read per word read                                                                                                     |
| Single buffer line                   | default mode of operation; most recently read flash word is kept until another flash word is required                                                                |
| Asynchronous timing                  |                                                                                                                                                                      |
| No buffer line                       | one flash word read per word read                                                                                                                                    |
| Single buffer line                   | most recently read flash word is kept until another flash word is required                                                                                           |
| Dual buffer line, single speculative | on a buffer miss a flash read is done, followed by at most one speculative read; optimized for execution of code with small loops (less than eight words) from flash |
| Dual buffer line, always speculative | most recently used flash word is copied into second buffer line; next flash word read is started; highest performance for linear reads                               |

## 8.1.3 Flash memory controller pin description

The flash memory controller has no external pins. However, the flash can be programmed via the JTAG pins, see Section 7.1.3.

## 8.1.4 Flash memory controller clock description

The flash memory controller is clocked by CLK\_SYS\_FMC, see Section 7.2.2.

#### 8.1.5 Flash layout

The ARM processor can program the flash for ISP (In-System Programming) and IAP (In-Application Programming). Note that the flash always has to be programmed by 'flash words' of 128 bits (four 32-bit AHB bus words, hence 16 bytes).

The flash memory is organized into eight 'small' sectors of 8 kB each and up to 11 'large' sectors of 64 kB each. The number of large sectors depends on the device type. A sector must be erased before data can be written to it. The flash memory also has sector-wise protection. Writing occurs per page which consists of 4096 bits (32 flash words). A small sector contains 16 pages; a large sector contains 128 pages.

Table 9 gives an overview of the flash sector base addresses.

Table 9. Flash sector overview

| Sector number | Sector size (kB) | Sector base address |
|---------------|------------------|---------------------|
| 0             | 8                | 0000 0000h          |
| 1             | 8                | 0000 2000h          |
| 2             | 8                | 0000 4000h          |
| 3             | 8                | 0000 6000h          |
| 4             | 8                | 0000 8000h          |
| 5             | 8                | 0000 A000h          |
| 6             | 8                | 0000 C000h          |
| 7             | 8                | 0000 E000h          |
| 8             | 64               | 0001 0000h          |
| 9             | 64               | 0002 0000h          |
| 10            | 64               | 0003 0000h          |

### **ARM9** microcontroller with CAN and LIN

| iable 3. I lasti sector overviewcontinue | Table 9. | Flash se | ctor overview | continuea |
|------------------------------------------|----------|----------|---------------|-----------|
|------------------------------------------|----------|----------|---------------|-----------|

| Sector number           | Sector size (kB) | Sector base address |
|-------------------------|------------------|---------------------|
| 11                      | 64               | 0004 0000h          |
| 12                      | 64               | 0005 0000h          |
| 13                      | 64               | 0006 0000h          |
| 14                      | 64               | 0007 0000h          |
| 15 <u>[1]</u>           | 64               | 0008 0000h          |
| 16 <u>[1]</u>           | 64               | 0009 0000h          |
| 17 <u><sup>11</sup></u> | 64               | 000A 0000h          |
| 18 <mark>1</mark>       | 64               | 000B 0000h          |

[1] Availability of sector 15 to sector 18 depends on device type, see Section 4 "Ordering information".

The index sector is a special sector in which the JTAG access protection and sector security are located. The address space becomes visible by setting the FS\_ISS bit and overlaps the regular flash sector's address space.

Note that the index sector cannot be erased, and that access to it has to be performed via code outside the flash.

### 8.1.6 Flash bridge wait-states

To eliminate the delay associated with synchronizing flash read data, a predefined number of wait-states must be programmed. These depend on flash memory response time and system clock period. The minimum wait-states value can be calculated with the following formulas:

Synchronous reading:

$$WST > \frac{t_{acc(clk)}}{t_{t_{clk(sys)}}} - 1 \tag{1}$$

Asynchronous reading:

$$WST > \frac{t_{acc(addr)}}{t_{tclk(sys)}} - 1 \tag{2}$$

**Remark:** If the programmed number of wait-states is more than three, flash data reading cannot be performed at full speed (i.e., with zero wait-states at the AHB bus) if speculative reading is active.

## 8.2 External static memory controller

#### 8.2.1 Overview

The LPC2917/19 contains an external Static Memory Controller (SMC) which provides an interface for external (off-chip) memory devices.

Key features are:

• Supports static memory-mapped devices including RAM, ROM, flash, burst ROM and external I/O devices

#### ARM9 microcontroller with CAN and LIN

- Asynchronous page-mode read operation in non-clocked memory subsystems
- · Asynchronous burst-mode read access to burst-mode ROM devices
- Independent configuration for up to eight banks, each up to 16 MB
- Programmable bus-turnaround (idle) cycles (one to 16)
- Programmable read and write wait states (up to 32), for static RAM devices
- Programmable initial and subsequent burst-read wait state for burst-ROM devices
- Programmable write protection
- · Programmable burst-mode operation
- Programmable external data width: 8 bits, 16 bits or 32 bits
- · Programmable read-byte lane enable control

### 8.2.2 Description

The SMC simultaneously supports up to eight independently configurable memory banks. Each memory bank can be 8 bits, 16 bits or 32 bits wide and is capable of supporting SRAM, ROM, burst-ROM memory or external I/O devices.

A separate chip select output is available for each bank. The chip select lines are configurable to be active HIGH or LOW. Memory-bank selection is controlled by memory addressing. Table 10 shows how the 32-bit system address is mapped to the external bus memory base addresses, chip selects and bank internal addresses.

Table 10. External memory-bank address bit description

| 32-bit<br>system<br>address bit<br>field | Symbol  | Description                                                                                                                                                                                        |
|------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31 to 29                                 | BA[2:0] | external static-memory base address (three most significant bits); the base address can be found in the memory map; see Ref. 1. This field contains '010' when addressing an external memory bank. |
| 28 to 26                                 | CS[2:0] | chip select address space for eight memory banks; see [1]                                                                                                                                          |
| 25 and 24                                | -       | always '00'; other values are 'mirrors' of the 16 MB bank address                                                                                                                                  |
| 23 to 0                                  | A[23:0] | 16 MB memory banks address space                                                                                                                                                                   |

Table 11. External static-memory controller banks

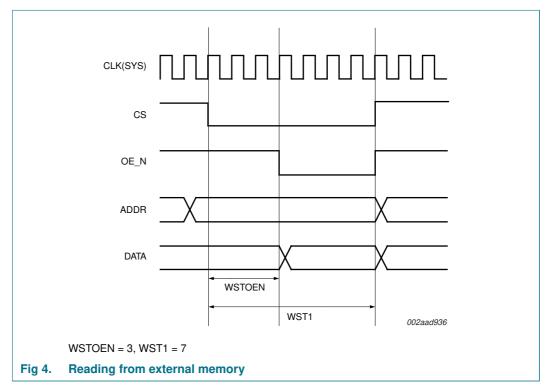
| 000 bank 0 001 bank 1 010 bank 2 011 bank 3 100 bank 4 101 bank 5 110 bank 6 111 bank 7 | CS[2:0] | Bank   |
|-----------------------------------------------------------------------------------------|---------|--------|
| 010 bank 2 011 bank 3 100 bank 4 101 bank 5 110 bank 6                                  | 000     | bank 0 |
| 011 bank 3 100 bank 4 101 bank 5 110 bank 6                                             | 001     | bank 1 |
| 100     bank 4       101     bank 5       110     bank 6                                | 010     | bank 2 |
| 101 bank 5 110 bank 6                                                                   | 011     | bank 3 |
| 110 bank 6                                                                              | 100     | bank 4 |
|                                                                                         | 101     | bank 5 |
| 111 bank 7                                                                              | 110     | bank 6 |
|                                                                                         | 111     | bank 7 |

#### ARM9 microcontroller with CAN and LIN

# 8.2.3 External static-memory controller pin description

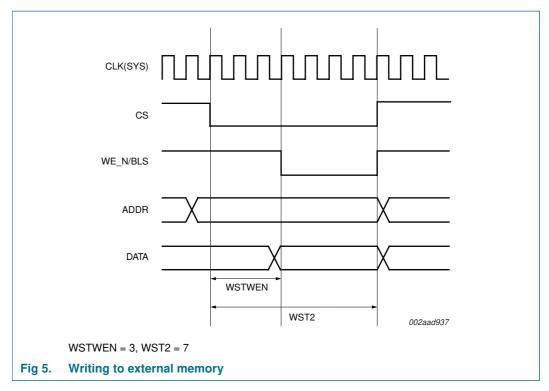
The external static-memory controller module in the LPC2917/19 has the following pins, which are combined with other functions on the port pins of the LPC2917/19. <u>Table 12</u> shows the external memory controller pins.

Table 12. External memory controller pins

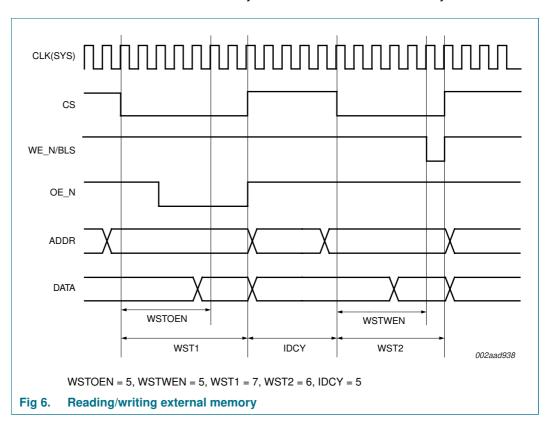

| Symbol         | Direction | Description                                  |
|----------------|-----------|----------------------------------------------|
| EXTBUS CSx     | OUT       | memory-bank x select, x runs from 0 to 7     |
| EXTBUS BLSy    | OUT       | byte-lane select input y, y runs from 0 to 3 |
| EXTBUS WE_N    | OUT       | write enable (active LOW)                    |
| EXTBUS OE_N    | OUT       | output enable (active LOW)                   |
| EXTBUS A[23:0] | OUT       | address bus                                  |
| EXTBUS D[31:0] | IN/OUT    | data bus                                     |

## 8.2.4 External static-memory controller clock description

The External Static-Memory Controller is clocked by CLK SYS SMC, see Section 7.2.2.


# 8.2.5 External memory timing diagrams

A timing diagram for reading from external memory is shown in <u>Figure 4</u>. The relationship between the wait-state settings is indicated with arrows.




A timing diagram for writing to external memory is shown In <u>Figure 5</u>. The relationship between wait-state settings is indicated with arrows.

#### **ARM9** microcontroller with CAN and LIN



Usage of the idle/turn-around time (IDCY) is demonstrated In <u>Figure 6</u>. Extra wait states are added between a read and a write cycle in the same external memory device.



#### ARM9 microcontroller with CAN and LIN

Address pins on the device are shared with other functions. When connecting external memories, check that the I/O pin is programmed for the correct function. Control of these settings is handled by the SCU.

# 8.3 General subsystem

## 8.3.1 General subsystem clock description

The general subsystem is clocked by CLK\_SYS\_GESS, see Section 7.2.2.

### 8.3.2 Chip and feature identification

#### 8.3.2.1 Overview

The key features are:

- Identification of product
- Identification of features enabled

#### 8.3.2.2 Description

The Chip/Feature ID (CFID) module contains registers which show and control the functionality of the chip. It contains an ID to identify the silicon, and also registers containing information about the features enabled or disabled on the chip.

#### 8.3.2.3 CFID pin description

The CFID has no external pins.

#### 8.3.3 System control unit

## 8.3.3.1 Overview

The SCU takes care of system-related functions. The key feature is configuration of the I/O port-pins multiplexer.

### 8.3.3.2 Description

The SCU defines the function of each I/O pin of the LPC2917/19. The I/O pin configuration should be consistent with peripheral function usage.

## 8.3.3.3 SCU pin description

The SCU has no external pins.

#### 8.3.4 Event router

#### **8.3.4.1** Overview

The event router provides bus-controlled routing of input events to the vectored interrupt controller for use as interrupt or wake-up signals.

Key features:

- Up to 24 level-sensitive external interrupt pins, including CAN, LIN and RXD wake-up features plus three internal event sources
- Input events can be used as interrupt source either directly or latched (edge-detected)
- · Direct events disappear when the event becomes inactive

#### ARM9 microcontroller with CAN and LIN

- · Latched events remain active until they are explicitly cleared
- · Programmable input level and edge polarity
- · Event detection maskable
- · Event detection is fully asynchronous, so no clock is required

## 8.3.4.2 Description

The event router allows the event source to be defined, its polarity and activation type to be selected and the interrupt to be masked or enabled. The event router can be used to start a clock on an external event.

The vectored interrupt-controller inputs are active HIGH.

## 8.3.4.3 Event-router pin description and mapping to register bit positions

The event router module in the LPC2917/19 is connected to the pins listed below. The pins are combined with other functions on the port pins of the LPC2917/19. <u>Table 13</u> shows the pins connected to the event router, and also the corresponding bit position in the event-router registers and the default polarity.

Table 13. Event-router pin connections

| Symbol    | Direction | Bit position | Description                     | Default<br>polarity |
|-----------|-----------|--------------|---------------------------------|---------------------|
| EXTINT0   | IN        | 0            | external interrupt input 0      | 1                   |
| EXTINT1   | IN        | 1            | external interrupt input 1      | 1                   |
| EXTINT2   | IN        | 2            | external interrupt input 2      | 1                   |
| EXTINT3   | IN        | 3            | external interrupt input 3      | 1                   |
| EXTINT4   | IN        | 4            | external interrupt input 4      | 1                   |
| EXTINT5   | IN        | 5            | external interrupt input 5      | 1                   |
| EXTINT6   | IN        | 6            | external interrupt input 6      | 1                   |
| EXTINT7   | IN        | 7            | external interrupt input 7      | 1                   |
| CAN0 RXDC | IN        | 8            | CAN0 receive data input wake-up | 0                   |
| CAN1 RXDC | IN        | 9            | CAN1 receive data input wake-up | 0                   |
| -         | -         | 13 to 10     | reserved                        | -                   |
| LIN0 RXDL | IN        | 14           | LIN0 receive data input wake-up | 0                   |
| LIN1 RXDL | IN        | 15           | LIN1 receive data input wake-up | 0                   |
| -         | -         | 21 to 16     | reserved                        | -                   |
| -         | na        | 22           | CAN interrupt (internal)        | 1                   |
| -         | na        | 23           | VIC FIQ (internal)              | 1                   |
| -         | na        | 24           | VIC IRQ (internal)              | 1                   |
| -         | -         | 26 to 25     | reserved                        | -                   |

# 8.4 Peripheral subsystem

# 8.4.1 Peripheral subsystem clock description

The peripheral subsystem is clocked by a number of different clocks:

• CLK SYS PESS

#### ARM9 microcontroller with CAN and LIN

- CLK UARTO/1
- CLK SPI0/1/2
- CLK TMR0/1/2/3
- CLK SAFE see Section 7.2.2

## 8.4.2 Watchdog timer

#### **8.4.2.1** Overview

The purpose of the watchdog timer is to reset the ARM9 processor within a reasonable amount of time if the processor enters an error state. The watchdog generates a system reset if the user program fails to trigger it correctly within a predetermined amount of time.

#### Key features:

- Internal chip reset if not periodically triggered
- · Timer counter register runs on always-on safe clock
- · Optional interrupt generation on watchdog time-out
- · Debug mode with disabling of reset
- · Watchdog control register change-protected with key
- Programmable 32-bit watchdog timer period with programmable 32-bit prescaler.

## 8.4.2.2 Description

The watchdog timer consists of a 32-bit counter with a 32-bit prescaler.

The watchdog should be programmed with a time-out value and then periodically restarted. When the watchdog times out it generates a reset through the RGU.

To generate watchdog interrupts in watchdog debug mode the interrupt has to be enabled via the interrupt enable register. A watchdog-overflow interrupt can be cleared by writing to the clear-interrupt register.

Another way to prevent resets during debug mode is via the Pause feature of the watchdog timer. The watchdog is stalled when the ARM9 is in debug mode and the PAUSE ENABLE bit in the watchdog timer control register is set.

The Watchdog Reset output is fed to the Reset Generation Unit (RGU). The RGU contains a reset source register to identify the reset source when the device has gone through a reset. See Section 8.8.5.

#### 8.4.2.3 Pin description

The watchdog has no external pins.

#### 8.4.2.4 Watchdog timer clock description

The watchdog timer is clocked by two different clocks; CLK\_SYS\_PESS and CLK\_SAFE, see <u>Section 7.2.2</u>. The register interface towards the system bus is clocked by CLK\_SYS\_PESS. The timer and prescale counters are clocked by CLK\_SAFE which is always on.

#### ARM9 microcontroller with CAN and LIN

#### 8.4.3 Timer

#### 8.4.3.1 Overview

The LPC2917/19 contains six identical timers: four in the peripheral subsystem and two in the Modulation and Sampling Control SubSystem (MSCSS) located at different peripheral base addresses. This section describes the four timers in the peripheral subsystem. Each timer has four capture inputs and/or match outputs. Connection to device pins depends on the configuration programmed into the port function-select registers. The two timers located in the MSCSS have no external capture or match pins, but the memory map is identical, see <a href="Section 8.7.7">Section 8.7.7</a>. One of these timers has an external input for a pause function.

#### The key features are:

- 32-bit timer/counter with programmable 32-bit prescaler
- Up to four 32-bit capture channels per timer. These take a snapshot of the timer value when an external signal connected to the TIMERx CAPn input changes state. A capture event may also optionally generate an interrupt
- Four 32-bit match registers per timer that allow:
  - Continuous operation with optional interrupt generation on match
  - Stop timer on match with optional interrupt generation
  - Reset timer on match with optional interrupt generation
- Up to four external outputs per timer corresponding to match registers, with the following capabilities:
  - Set LOW on match
  - Set HIGH on match
  - Toggle on match
  - Do nothing on match
- Pause input pin (MSCSS timers only)

## 8.4.3.2 Description

The timers are designed to count cycles of the clock and optionally generate interrupts or perform other actions at specified timer values, based on four match registers. They also include capture inputs to trap the timer value when an input signal changes state, optionally generating an interrupt. The core function of the timers consists of a 32 bit 'prescale counter' triggering the 32 bit 'timer counter'. Both counters run on clock CLK\_TMRx (x runs from 0 to 3) and all time references are related to the period of this clock. Note that each timer has its individual clock source within the Peripheral SubSystem. In the Modulation and Sampling SubSystem each timer also has its own individual clock source. See section <a href="Section 8.8.6">Section 8.8.6</a> for information on generation of these clocks.

#### 8.4.3.3 Pin description

The four timers in the peripheral subsystem of the LPC2917/19 have the pins described below. The two timers in the modulation and sampling subsystem have no external pins except for the pause pin on MSCSS timer 1. See Section 8.7.7 for a description of these

#### ARM9 microcontroller with CAN and LIN

timers and their associated pins. The timer pins are combined with other functions on the port pins of the LPC2917/19, see Section 8.3.3. Table Table 14 shows the timer pins (x runs from 0 to 3).

Table 14. Timer pins

| Symbol        | Direction | Description             |
|---------------|-----------|-------------------------|
| TIMERx CAP[0] | IN        | TIMER x capture input 0 |
| TIMERx CAP[1] | IN        | TIMER x capture input 1 |
| TIMERx CAP[2] | IN        | TIMER x capture input 2 |
| TIMERx CAP[3] | IN        | TIMER x capture input 3 |
| TIMERx MAT[0] | OUT       | TIMER x match output 0  |
| TIMERx MAT[1] | OUT       | TIMER x match output 1  |
| TIMERx MAT[2] | OUT       | TIMER x match output 2  |
| TIMERx MAT[3] | OUT       | TIMER x match output 3  |

#### 8.4.3.4 Timer clock description

The timer modules are clocked by two different clocks; CLK\_SYS\_PESS and CLK\_TMRx (x = 0-3), see Section 7.2.2. Note that each timer has its own CLK\_TMRx branch clock for power management. The frequency of all these clocks is identical as they are derived from the same base clock BASE\_CLK\_TMR. The register interface towards the system bus is clocked by CLK\_SYS\_PESS. The timer and prescale counters are clocked by CLK\_TMRx.

#### 8.4.4 **UARTs**

## 8.4.4.1 **Overview**

The LPC2917/19 contains two identical UARTs located at different peripheral base addresses. The key features are:

- 16-byte receive and transmit FIFOs
- · Register locations conform to 550 industry standard
- Receiver FIFO trigger points at 1 byte, 4 bytes, 8 bytes and 14 bytes
- · Built-in baud rate generator

#### 8.4.4.2 Description

The UART is commonly used to implement a serial interface such as RS232. The LPC2917/19 contains two industry-standard 550 UARTs with 16-byte transmit and receive FIFOs, but they can also be put into 450 mode without FIFOs.

## 8.4.4.3 UART pin description

The two UARTs in the LPC2917/19 have the following pins. The UART pins are combined with other functions on the port pins of the LPC2917/19. <u>Table 15</u> shows the UART pins (x runs from 0 to 1).

Table 15. UART pins

| Symbol    | Direction | Description                         |
|-----------|-----------|-------------------------------------|
| UARTx TXD | OUT       | UART channel x transmit data output |
| UARTx RXD | IN        | UART channel x receive data input   |