
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 1

AN10149

PCA9564 Evaluation Board

Jean-Marc Irazabal PCA Technical Marketing Manager

Paul Boogaards Sr. Field Application Engineer
Bauke Siderius Application Engineer

2004 Aug 19

INTEGRATED CIRCUITS

Philips
Semiconductors

Abstract

PCA9564 evaluation board description, features and operation modes are discussed. Source code

in C language, containing communication routines between an 80C51-core microcontroller and the

PCA9564 is provided.

 2

TABLE OF CONTENTS

OVERVIEW...3

DESCRIPTION ..3

ORDERING INFORMATION ..4

TECHNICAL INFORMATION – HARDWARE...4

BLOCK DIAGRAM ..4

I2C DEVICE ADDRESSES...4

SCHEMATIC ..5

PCA9564 EVALUATION BOARD TOP VIEW..6

JUMPERS AND HEADERS ..6

PUSHBUTTONS – USER INTERFACE AND RESET ..8

IN-SYSTEM PROGRAMMING MODE ..8

P89LV51RD2 ISP programming ...9

P89LPC932 ISP programming..9

OTHER FEATURES ...9

Write Protect PCF85116...9

Use of other 80C51 type Philips microcontrollers ..10

Use of any other non 80C51 type master devices ..10

Communication between the 2 microcontrollers ...10

Miscellaneous..11

TECHNICAL INFORMATION – EMBEDDED FIRMWARE ..12

OVERVIEW..12

EMBEDDED PROGRAMS FLOWCHARTS ..14

Program Selection...14

Program 1: P89LV51RD2–PCA9564–PCA9531; PCA9531 dynamic programming..15

Program 2: P89LV51RD2–PCA9564–PCA9531–PCF85116–P89LPC932; Predefined blinking patterns16

Program 3: P89LV51RD2–PCA9564–PCA9531–P89LPC932; P89LPC932 LED programming..16

Program 4: P89LV51RD2–PCA9564–PCA9531–P89LPC932; I
2
C address search ..17

SOURCE CODE P89LV51RD2 – REV 1.0 ..18

SOURCE CODE P89LPC932 – REV 1.0..18

DOWNLOAD SOFTWARE, PROGRAMS AND DOCUMENTATION ...19

PCA9564 EVALUATION BOARD WEB PAGE..19

APPENDIX 1: P89LV51RD2 MICROCONTROLLER SOURCE CODE – REV 1.0...20

I2CEXPRT.H ..20

MAINLOOP.C...21

I2C_ROUTINES.H..23

I2C_ROUTINES.C ..23

I2CDRIVR.H...36

I2CDRIVR.C...36

I2CMASTR.H ..37

I2CMASTR.C ...38

I2CINTFC.C..41

PCA9564SYS.H ..43

PCA9564SYS.C ..43

INTERRUPTS.C...44

APPENDIX 2: P89LPC932 MICROCONTROLLER SOURCE CODE – REV 1.0 ..45

MAIN.C...45

I2CSLAVE.C...46

UA_EXPRT.H ...48

APPENDIX 3: PCA9564 EVALUATION BOARD BILL OF MATERIAL...49

REVISION HISTORY ..51

DISCLAIMERS..52

 3

OVERVIEW

Description

The PCA9564 Evaluation Board demonstrates the Philips PCA9564 I2C-bus controller’s ability to interface between a

master (connected to its parallel bus and its control signals) and any master and slave devices connected to its I2C-bus.

The evaluation board is populated with the following devices and functions:

- Philips P89LV51RD2 microcontroller connected to the PCA9564 8-bit parallel port and control signals. It is used

as the master controlling the other devices on the board with the embedded firmware. It can also be used as a slave

device with an appropriate program loaded.

- Philips PCA9564 I2C-bus controller interfacing between the P89LV51RD2 and the I2C-bus.

- Philips PCA9531 I2C 8-bit LED dimmer used as an I2C target slave device for the P89LV51RD2/PCA9564.

- Philips P89LPC932 microcontroller connected to the I2C-bus. It can act as either a target slave device with the

default P89LV51RD2 firmware programs or as a master connected to the I2C-bus through some stored user

definable routines.

- Philips PCF85116 16 kbits (2KB) I2C EEPROM used to store information that can be used by the evaluation board

firmware.

- Philips PCA9554A I2C 8-bit GPIO acting as interface / keyboard between the user and the P89LV51RD2

- Sipex SP3223 RS-232 transceiver allows the P89LV51RD2 and the P89LPC932 devices to be in-system

programmed through a personal computer’s serial port.

An external 9 V DC power supply is used to provide power to the 3.3 V on-board voltage regulator. The P89LPC932

and P89LV51 are both limited to a 3.3 V supply voltage.

The evaluation board can be used in different ways:

1. Stand-alone mode: 4 default firmware programs are stored in the P89LV51RD2 (master) and the P89LPC932

(slave). No external hardware or software is required. The firmware allows the user to execute some applications

where data and control traffic is automatically generated in both directions between the P89LV51RD2 and the

PCA9564 on one side and the PCA9564 and the I2C devices on the other side (PCA9531, PCF85116, P89LPC932

and PCA9554A). The user, through an 8-switch interface, can control the routines and the execution of the

commands. The embedded firmware provides master mode examples (transmitter and receiver). Code is written in

C language and can be used with any 80C51-type microcontroller. The embedded firmware can be downloaded

from the www.standardproducts.philips.com website which the user can modify as required.

2. Program the microcontroller(s) with compiled files (“Hex” files) through the ISP (In-System Programming)

interface. This mode allows a user to program the microcontroller(s) with additional applications and programs.

Code programming is not required and the “Hex” file(s) can be loaded to the microcontroller(s) by using Flash

Magic, Windows based free software from the Embedded Systems Academy, sponsored by Philips Semiconductors

(http://www.esacademy.com/software/flashmagic/). “Hex” files can be downloaded from the

www.standardproducts.philips.com website. “Hex” files can be the manufacturing default embedded program

(explained above) or any evaluation/demo program that will be developed for this specific board.

3. Use the full flow using 8051 software development tools: C code generation or Assembler code generation,

program debugging, compilation and program loading the targeted microcontroller to develop specific applications

using the PCA9564 evaluation board and optional I2C devices daughter cards. Free evaluation software from

American Raisonance allowing up to 4 kbits of code can be used.

4. Use any emulator, microcontroller, microprocessor or DSP instead of the Philips P89LV51RD2. To do that, the

new master needs to be connected to the 8-bit parallel port and control signals headers and the P89LV51RD2 needs

to be removed from its socket.

For more information about program files and software that is required, refer to the paragraphs “Download software,

programs and documentation” and “PCA9564 evaluation board web page”.

 4

Ordering information

The complete PCA9564 evaluation board Kit consists of the:

• PCA9564 evaluation board

• 9 V DC power supply

• DB-9 connector

Kit can be obtained through your local Philips Semiconductors Sales organization. It can also be obtained via email at

i2c.support@philips.com.

TECHNICAL INFORMATION – HARDWARE

Block diagram

Figure 1. Evaluation board block diagram

I2C device addresses

 Device type Description I
2
C Address (Hexadecimal)

P89LV51RD2 / PCA9564 Microcontroller / I2C-bus controller User definable when microcontroller used as slave

P89LPC932 Microcontroller User definable when microcontroller used as slave

0xE0 to 0xE8 with the embedded programs

PCA9531 8-bit I2C LED Dimmer 0xC8

PCF85116 16kbits I2C EEPROM 0xA0 to 0xA8 (function of the addressed memory)

PCA9554A 8-bit I2C GPIO 0x7E

Table 1. I
2
C device addresses

P89LV51

RD2

PCA9564
DATA

CONTROL

PCA9554A

SP3223

PCA9531

PCF85116

P89LPC932

8 PUSHBUTTONS

DB-9

connector

8 LEDs

8 LEDs

I2C

Connector

VDD

GND

VDD
GND

I2C

Connector

VOLTAGE

REGULATOR
9 V external

power supply

3.3 V

SDA

SCL

I2C-bus 1

I2C-bus 2

INT

RS-232

 5

Schematic

Figure 2. PCA9564 Evaluation Board Schematic

 6

PCA9564 Evaluation Board Top view

Figure 3. PCA9564 Evaluation Board Top View

Jumpers and Headers

Label

Purpose Jumper position Description

Open WP pin connected to VDD – Write not permitted JP1

(EEWP)

PCF85116 Write Protect

Closed WP pin connect to GND – Write permitted

Open No ISP programming can be performed

Closed between 1 and 2

(PRGLPC)

ISP programming of P89LPC932 can be performed

TxD pin of P89LPC932 connected to T1IN of SP3223

JP2 Selection of the

microcontroller to be

programmed through

ISP (TxD)
Closed between 2 and 3

(PRGLV)

ISP programming of P89LV51RD2 can be performed

TxD pin of P89LV51RD2 connected to T1IN of SP3223

Open No ISP programming can be performed

Closed between 1 and 2

(PRGLPC)

ISP programming of P89LPC932 can be performed

RxD pin of P89LPC932 connected to R1OUT of SP3223

JP3 Selection of the

microcontroller to be

programmed through

ISP (RxD)
Closed between 2 and 3

(PRGLV)

ISP programming of P89LV51RD2 can be performed

TxD pin of P89LV51RD2 connected to R1OUT of SP3223

JP4

(9564)

I2C-bus connector 1 I2C-bus 1 – Bus connected to the PCA9564, PCA9531, PCF85116

and PCA9554A

Note: I2C-bus 1 and I2C-bus 2 can be connected together through

jumpers JP6 and JP7

JP5

(LV/LPC)

I2C-bus connector 2 I2C-bus 2 – Bus connected to the P89LPC932. It is also connected to

the I2C-bus of a P89C51Rx+/Rx2/66x with I2C-bus

(SCL = P1.6, SDA = P1.7) when JP12 and JP13 closed

Note: I2C-bus 1 and I2C-bus 2 can be connected together through

jumpers JP6 and JP7

P89LV51RD2

PCA9564 PCA9531

P89LPC932

PCF85116

PCA9554A

SP3223

I2C-bus 1 Connector 1 – 9564

JP4

I2C-bus 2 Connector 2 – LV/LPC

JP5

JP2

JP3
JP17

JP18

JP11

JP7

JP6

VDD Conn – J P8

PORT0LPC

PORT1LV51 VDDMCU +

JP12 – SCLLV

JP13 – SDALV

JP9 – PSEN\

JP16

JP14 EEWP – JP1

RSTISP – JP10

VDDISP – JP15 RESET

JP19 – A2

JP20 – A1

JP21 – A0

I2C Connect –

LD9 to LD12 (top to bottom)

LD1 to LD8 (bottom to top)

LD13 to LD20 (right to left)

LD21 to LD23 (right to left)

 7

Open SCL I2C-bus 1 and SCL I2C-bus 2 are not connected together JP6

(I2C

Connect)

Connect I2C-bus 1 and

I2C-bus 2
Closed SCL I2C-bus 1 and SCL I2C-bus 2 are connected together

Open SDA I2C-bus 1 and SDA I2C-bus 2 are not connected together JP7

(I2C

Connect)

Connect I2C-bus 1 and

I2C-bus 2
Closed SDA I2C-bus 1 and SDAI2C-bus 2 are connected together

Open VDD pin of connectors not connected to the internal 3.3 V power

supply

JP8

(VDD Conn)

Power supply for the

I2C-bus connectors

Closed VDD pin of connectors connected to the internal 3.3 V power supply

Open ISP mode not entered JP9

(PSEN\)

89C51Rx+/Rx2/66x
 ISP mode

(Not applicable to

P89LV51RD2, only to

5 V devices)

Closed ISP mode entered

Note: More information can be found on the Philips Application

Notes AN461: “In-circuit and In-application programming of

the 89C51Rx+/Rx2/66x microcontrollers”

Open Normal mode JP10

(RSTISP)

P89LPC932 ISP mode

Closed P89LPC932 ISP mode

Open PCA9554A INT pin not monitored

Closed between 1 and 2

(INTLPC)
PCA9554A INT pin can be monitored by P89LPC932

JP11 PCA9554A Interrupt

output monitoring

Closed between 2 and 3

(INTLV)
PCA9554A INT pin can be monitored by P89LV51RD2

Open P89C51Rx+/Rx2/66x with I2C-bus (SCL = P1.6) not connected to

SCL I2C-bus 2

JP12

(SCLLV)

P89x51 with I2C-bus

connection to I2C-bus 2

Closed P89C51Rx+/Rx2/66x with I2C-bus (SCL = P1.6) connected to SCL

I2C-bus 2

Open P89C51Rx+/Rx2/66x with I2C-bus (SDA = P1.7) not connected to

SDA I2C-bus 2

JP13

(SDALV)

P89x51 with I2C-bus

connection to I2C-bus 2

Closed P89C51Rx+/Rx2/66x with I2C-bus (SDA = P1.7) connected to SDA

I2C-bus 2

JP14 PCA9564 control signals Probing of PCA9564 control signals

Open P89LPC932 ISP mode JP15

(VDDISP)

Closed Normal mode

JP16 PCA9564 parallel bus Probing of PCA9564 8-bit parallel bus

Open Pins not connected together JP17

(Tx ↔Rx)

Connection TxD

P89LV51RD2 to RxD

P89LPC932 Closed Pins connected together

Note: JP2 and JP3 must be open when JP17 is closed

Open Pins not connected together JP18

(Rx ↔Tx)

Connection RxD

P89LV51RD2 to TxD

P89LPC932 Closed Pins connected together

Note: JP2 and JP3 must be open when JP18 is closed

Open Address Input 0 connected to VDD – A0 = 1 JP19

(A0)

P89LPC932 I2C slave

address input 0
Closed Address Input 0 connected to GND – A0 = 0

Open Address Input 1 connected to VDD – A1 = 1 JP20

(A1)

P89LPC932 I2C slave

address input 1
Closed Address Input 1 connected to GND – A1 = 0

Open Address Input 2 connected to VDD – A2 = 1 JP21

(A2)

P89LPC932 I2C slave

address input 2
Closed Address Input 2 connected to GND – A2 = 0

Open External power supply can be applied to the P89xx51 microcontroller

(Voltage applied to pin VDDMCU+, on the left side of the jumper)

VDDMCU+ P89xx51 Power supply

selection

Closed Internal regulated 3.3 V power supply applied to the P89xx51

microcontroller

PORT1LV51 Port 1 P89LV51 General purpose 8-bit Input/Output port (Port 1 P89LV51RD2)

PORT0LPC Port 0 P89LPC932 General purpose 8-bit Input/Output port (Port 0 P89LPC932)

Table 2. PCA9564 Evaluation Jumpers and Headers

 8

Pushbuttons – User interface and Reset

• Pushbuttons S1 to S8:

They are connected to the 8 inputs of the PCA9554A, I2C General Purpose Input Output device and can be used as

an interface between the user and the microcontroller(s) to perform actions such as program selection, user

definable events …

The microcontroller(s) can either:

- Poll the PCA9554A in order to read the input register and the state of the switches.

Reading of the input port is performed by:

1. Sending the PCA9554A I2C address with a Write command followed by 0x00 (Input register pointer).

2. A Re-Start Command followed by the PCA9554A I2C address with a Read command.

3. Reading the input port register byte from the PCA9554A.

- Monitor the PCA9554A Interrupt output pin in order to detect change(s) in the switches.

When one or more input change states:

1. The PCA9554A Interrupt output will go LOW, thus indicating to the microcontroller that a switch has

been pressed and the Interrupt service routine needs to be initiated.

2. The microcontroller can then perform the same reading sequence as explained above in order to determine

which input changes state. Reading the PCA9554A will automatically clear its interrupt.

Pushbuttons can be used in 2 different modes with the embedded programs:

- Single shot mode: a single push then release is detected. The action associated with the pushbutton is executed

once.

1. An Interrupt is detected by the master (P89LV51RD2) when a pushbutton is pressed.

2. P89LV51RD2 initiates a read of the PCA9554A input register (first snapshot).

3. P89LV51RD2 initiates a second reading of the PCA9554A input register (second snapshot) about 750 ms

later.

If the second reading indicates a pushbutton idle condition, then the action read the first time is performed

once.

- Permanent push mode: the user keeps the pushbutton pushed and the master executes the associated

command until the pushbutton is released again.

1. An Interrupt is detected by the master (P89LV51RD2) when a pushbutton is pressed

2. P89LV51RD2 initiates a read of the PCA9554A input register (first snapshot)

3. P89LV51RD2 initiates a second read of the PCA9554A input register (second snapshot) about 750 ms

after

If the second read is the same as the first one, then the master will continue to poll the PCA9554A input

register and execute the associated command until the user releases the pushbutton.

Notes:

- Connection of the PCA9554A Interrupt pin to the P89LV51RD2 or to the P89LPC932 is done through jumper

JP11.

a) JP11 between 1 and 2 connects the PCA9554A Interrupt pin to the P89LPC932 device

b) JP11 between 2 and 3 connects the PCA9554A Interrupt pin to the P89LV51 device

- Polling or interrupt monitoring of the PCA9554A by the P89LPC932 microcontroller requires having jumpers

JP6 and JP7 closed. I2C-bus 1 and I2C-bus 2 need to be connected together since the PCA9554A is located on

I2C-bus 1.

• Pushbutton S9:

Pushbutton S9 (RESET), when pressed, performs a reset to both P89LV51RD2 and PCA9531 devices to their

power up default states. It is also used to enter and exit the P89LV51RD2 ISP mode (for more detail, refer to the

paragraph “In-System Programming Mode”.

In-System Programming Mode

P89LV51RD2 and P89LPC932 devices have a built-in ISP (In-System Programming) algorithm allowing them to be

programmed without the need to remove them from the application. Also, a previously programmed device can be

erased and reprogrammed without removal from the circuit board. In order to perform ISP operations, the

microcontroller is powered up in a special “ISP mode”. ISP mode allows the microcontroller to communicate with an

external host device through the serial port, such as a PC or terminal. The microcontroller receives commands and data

from the host, erases and reprograms code memory, etc. Once the ISP operations have been completed, the device is

reconfigured so that it will operate normally the next time it is either reset or power cycled.

 9

ISP programming for both devices can be done using Flash Magic. Flash Magic is a free, powerful, feature-rich

Windows application that allows easy programming of Philips Flash microcontrollers. Flash Magic uses Intel Hex files

as input to program the targeted device. For download information, refer to the paragraph “Download software,

programs and documentation”.

P89LV51RD2 ISP programming
a) Set jumpers JP2 and JP3 to target P89LV51RD2 device: both jumpers connected between 2 and 3

b) Connect the DB-9 cable between the PC serial port and the PCA9564 evaluation board DB-9 connector

c) Enter the P89LV51RD2 ISP mode as requested in the Flash Magic pop up window: This is done by pushing the

RESET pushbutton (S9) one time.

d) Open Flash Magic and go through the five following steps:

Step 1: Set the connection status and the type of microcontroller to be programmed: COM port, Baud Rate (9600),

Device = 89LV51RD2

Step 2: Flash erasing (part or all)

Step 3: Select the Hex file to be loaded in the microcontroller

Step 4: Options to be set (Memory verification, Security bits…)

Step 5: Perform the operations described in the steps above (click on “START” button)

Programming of the blocks is displayed at the bottom of the Flash Magic window.

e) Exit the P89LV51RD2 ISP mode when programming done (“Finished” displayed at the bottom of the Flash Magic

window): This is done by pushing the RESET pushbutton one time again (S9)

f) Once device programming has successfully been executed, the microcontroller can run the new program.

P89LPC932 ISP programming
a) Set jumpers JP2 and JP3 to target P89LPC932 device: both jumpers connected between 1 and 2

b) Connect the DB-9 cable between the PC serial port and the PCA9564 evaluation board DB-9 connector

c) Enter the P89LPC932 ISP mode: This is done by setting the following jumpers:

- JP10 (RSTISP) closed

- JP15 (VDDISP) open

- JP6 and JP7 (I2CConnect) open

- JP12 (SCLLV) and JP13 (SDALV) open

d) Open Flash Magic and go through the 6 following steps:

Step 1: Set the connection status and the type of microcontroller to be programmed: COM port, Baud Rate (9600),

Device = 89LPC932

Step 2: Go to: Options → Advanced Options → Hardware Config

Check the box “Use DTR and RTX to enter ISP mode”

Step 3: Flash erasing (part or all)

Step 4: Select the Hex file to be loaded in the microcontroller

Step 5: Options to be set (Memory verification, Security bits…)

Step 6: Perform the operations described in the steps above (click on “START” button).

Programming of the blocks is displayed at the bottom of the Flash Magic window.

e) Exit the P89LV51RD2 ISP mode when programming done (“Finished” displayed at the bottom of the Flash Magic

window): This is done by setting:

- JP10 (RSTISP) open

- JP15 (VDDISP) closed

- State of JP6, JP7, JP12 and JP13 are function of the program requirements

f) Once device programming has successfully completed, exit from the ISP. The microcontroller is now ready to run

the new program.

Other features

Write Protect PCF85116
JP1 allows data protection in the PCF85116 EEPROM:

- JP1 open: data in the EEPROM is write protected

- JP1 closed: writing to the EEPROM is allowed – memory is not protected

 10

Use of other 80C51 type Philips microcontrollers
Any Philips 80C51 microcontroller pin to pin compatible with the P89LV51Rx2 device can be used as to interface with

the PCA9564.

• Power supply:

It can be chosen from:

- The internal 3.3 V regulated voltage: Jumper VDDMCU+ closed

- An external regulated voltage: Jumper VDDMCU+ open, external voltage applied to VCCMCU+

If an external voltage is applied to the microcontroller, digital signals interfacing with the PCA9564 will be pulled

up to this external voltage value.

Caution: Since the PCA9564 is 5.5 V tolerant, no voltage greater than 5.5 V must be applied to the

VDDMCU+ pin.

• Microcontroller with built-in I2C interface:

Port P1.6 (SCL) and P1.7 (SDA) can be connected to the internal I2C-bus 2 (connector JP5) through jumpers JP12

and JP13.

- JP12 open: P1.6 not connected to SCL2

- JP12 closed: P1.6 connected to SCL2

- JP13 open: P1.7 not connected to SDA2

- JP13 closed: P1.7 connected to SDA2

• ISP mode:

ISP mode for P89C51Rx+/Rx2/66x devices can also be entered by forcing the /PSEN pin to LOW. This is

performed through the jumper JP9.

- JP9 open: PSEN floating

- JP9 closed: PSEN forced to ground

Use of any other non 80C51 type master devices
Any other non-80C51 type microprocessor, DSP, ASIC or emulator can be used with the PCA9564 evaluation board.

When an external device is used:

1) Remove the P89LV51RD2 microcontroller from its socket

2) Apply the 8-bit parallel bus data on connector JP16. Built-in pull up resistors can be disconnected by opening the

jumper VDDMCU+.

Note: RESET pushbutton (S9) cannot longer be used when VDDMCU+ is open

3) Apply PCA9564 control signals and monitor Interrupt pin (open drain output) on connector JP14

Caution: Since the PCA9564 is 5.5 V tolerant, no voltage greater than 5.5 V must be applied to the parallel bus

data and the control signals

Communication between the 2 microcontrollers

• Communication through the I2C-bus:

Jumpers JP6 and JP7 allow to connect or split the I2C-bus in one same bus or 2 different buses.

I2C-bus 1 contains the following devices: P89LV51RD2/ PCA9564, PCA9531, PCF85116 and PCA9554A

I2C-bus 2 contains the following devices: P89LPC932, P89xx51 with built-in SCL/SDA (when jumpers JP12 and

JP13 are closed).

- JP6 open: SCL Bus 1 and SCL Bus 2 are not connected together

- JP6 closed: SCL Bus 1 and SCL Bus 2 are connected together

- JP7 open: SDA Bus 1 and SDA Bus 2 are not connected together

- JP7 closed: SDA Bus 1 and SDA Bus 2 are connected together

Since the PCA9564 is a multi-master capable device, both microcontrollers can be a master in the same bus (when

JP6 and JP7 closed). If both masters try to take control of the I2C-bus at the same time, an arbitration procedure will

be performed between the P89LV51RD2/PCA9564 and the P89LPC932.

• Communication through RxD and TxD pins:

An additional non-I2C communication channel between the 2 microcontrollers is available through their RxD and

TxD pins.

P89LV51 TxD pin can be connected to the P89LPC932 RxD pin through jumper JP17

- JP17 open: pins are not connected together

- JP17 closed: pins are connected together

 11

P89LV51 RxD pin can be connected to the P89LPC932 TxD pin through jumper JP18

- JP18 open: pins are not connected together

- JP18 closed: pins are connected together

Note:

Jumpers JP2 and JP3 must be open when JP17 and JP18 need to be closed.

Miscellaneous

• Power supply for daughter cards connected to the I2C-bus connectors:

Jumper JP8 (VDD Conn), when closed, connect the VDD pins in the two I2C-bus connectors (JP4 and JP5) to the

internal 3.3 V regulated voltage, thus allowing daughter cards to be supplied directly by the main board

- JP8 open: VDD pin in the two I2C-bus connectors is floating

- JP8 closed: VDD pin in the two I2C-bus connectors is connected to the internal 3.3 V regulated voltage

• General purpose LEDs:

Several LEDs are connected to the P89LV51RD2 and the P89LPC932 for debugging or general-purpose use.

LD1 to LD8 are accessible by both microcontrollers through I2C by programming the PCA9531.

LED Pin Device LED Pin Device

LD1 LED0 PCA9531 LD13 P2.0 P89LPC932

LD2 LED1 PCA9531 LD14 P2.1 P89LPC932

LD3 LED2 PCA9531 LD15 P2.2 P89LPC932

LD4 LED3 PCA9531 LD16 P2.3 P89LPC932

LD5 LED4 PCA9531 LD17 P2.4 P89LPC932

LD5 LED5 PCA9531 LD18 P2.5 P89LPC932

LD7 LED6 PCA9531 LD19 P2.6 P89LPC932

LD8 LED7 PCA9531 LD20 P2.7 P89LPC932

LD9 P2.2 P89LV51RD2 LD21 P1.4 P89LPC932

LD10 P2.3 P89LV51RD2 LD22 P1.6 P89LPC932

LD11 P2.4 P89LV51RD2 LD23 P1.7 P89LPC932

LD12 P2.5 P89LV51RD2

Table 3. Evaluation board LEDs

• General Purpose jumpers for P89LPC932:

Jumpers JP19, JP20 and JP21 allows to force HIGH or LOW logic levels respectively on pins P0.0, P0.1 and P0.2

of the P89LPC932.

- JPxx open: the corresponding port is set to HIGH

- JPxx closed: the corresponding input port is set to LOW

• General purpose headers for both microcontrollers:

PORT1LV51 and PORT0LPC headers allow to easily access to Port 0 of each device for monitoring or external

control. VDD and GND pins are also available.

Note:

Header labeled “3v3” on PORT0LV51 is actually connected to VDDMCU+ pin. The voltage on this node can be

externally supplied and is limited to 5.5 V.

 12

TECHNICAL INFORMATION – EMBEDDED FIRMWARE

Overview

PCA9564 evaluation board is delivered with 4 different embedded firmware programs (Program 1 to Program 4)

allowing the user to run simple applications in order to evaluate the PCA9564’s capabilities, to monitor data and control

signals with the P89LV51RD2 master, and the I2C slave devices present in the evaluation board.

Besides the external power supply, no external hardware or software is required to run those applications. Embedded

programs are erased as soon as the microcontroller is reprogrammed with a different code. The embedded programs

require programming of both P89LV51RD2 and P89LPC932 and “Hex” files can be downloaded from

www.standardproducts.philips.com website. “Hex” files can be loaded to the microcontrollers by using their ISP mode

with Flash Magic software. For more information about ISP mode and file downloading, refer to the paragraphs “In-

System Programming mode” and “Download software, programs and documentation”.

- Pushbuttons S1 to S8 allow program selection (S8) and initiate specific actions for each program (S1 to S7).

PCA9554A is used to collect actions performed on the pushbuttons and inform the P89LV51RD2 that a reading

routine to determine the nature of the action is requested. Pushing S8 does jump from one program to another (from

Program 1 to Program 4, then again Program 1…).

- LD9 and LD10 display the number of the selected program

- LD11 and LD12 display program specific information

• Program 1 (LD9 = OFF, LD10 = OFF): PCA9531 dynamic programming

Program 1 uses the P89LV51RD2/PCA9564 as an I2C master, the PCA9531 (with LD1 to LD8) as an I2C slave to

dynamically change blinking rates and output states.

LD1 to LD4 are programmed to blink at Blinking rate 0 (BR0), while LD5 to LD8 are programmed to blink at

Blinking Rate 1 (BR1).

Actions on the pushbuttons:

- S1: Decrease blinking frequency for both BR0 and BR1 (single shot or permanent push modes)

- S2: Decrease duty cycle for both BR0 and BR1 (single shot or permanent push modes)

- S3: Select the Blinking Rate (BR0 or BR1) to be programmed through S1, S2, S5, S6 and S7

- S4: Reset the programming and program the LEDs to their default blinking frequency

- S5: Increase blinking frequency for both BR0 and BR1 (single shot or permanent push modes)

- S6: Increase duty cycle for both BR0 and BR1 (single shot or permanent push modes)

- S7: Program the LEDs to be OFF or blinking at BR0 or BR1

- S8: Jump to the next program (Program 2)

LD11 and LD12 provide the following information:

- LD11 = OFF → BR0 programming selected (LD1 to LD4)

- LD11 = ON → BR1 programming selected (LD5 to LD8)

- LD12 = ON → Default blinking rate set to the PCA9531

- LD12 = OFF → PCA9531 has been programmed by the user and blinking is different from default values

• Program 2 (LD9 = ON, LD10 = OFF): Preprogrammed blinking patterns

Program 2 uses the P89LV51RD2/PCA9564 as an I2C master, the PCF85116, the PCA9531 (with LD1 to LD8) and

the P89LPC932 (with LD13 to LD20) as I2C slaves to display preprogrammed blinking patterns stored in the

EEPROM.

For a specific selected pattern:

a) Data used to program the PCA9531is read from the EEPROM. Data organization is shown in Figure 4.

b) The PCA9531 is then programmed with the data previously read.

Action on the pushbuttons:

- S4: Scans the EEPROM in order to determine location of the different patterns (first and last cell numbers for

each programmed pattern).

- S5: Select the pattern to be read from the EEPROM and to be programmed in the PCA9531. Scan of the

EEPROM must be performed first before being able to select between the different patterns.

- S8: Jump to the next program (Program 3)

 13

LD12 provides the following information:

- LD12 = OFF → Scan of the EEPROM not performed

- LD12 = ON → Scan of the EEPROM performed

LD13 to LD20 display the number of the pattern currently selected.

Figure 4. PCF85116 memory organization

• Program 3 (LD9 = OFF, LD10 = ON): P89LPC932 LED programming

Program 3 uses P89LV51RD2/PCA9564 as an I2C master, the PCA9531 (with LD1 to LD8) and the P89LPC932

(with LD13 to LD20) as I2C slaves to display a user definable byte on LD13 to LD20.

Value of the byte to be programmed is displayed with LD1 (bit 0, LSB) to LD8 (bit 7, MSB)

Once P89LPC932 has been programmed, the value is displayed with LD13 (bit 0, LSB) to LD20 (bit 7, MSB).

Action on the pushbuttons:

- S1: Decrease position of the bit to be programmed: 7 → 6 → 5 → 4 → 3 → 2 → 1 → 0 → 7 → …

- S2: Invert the polarity of the logic value of the current bit, programmed logic value is displayed on LD1 to

LD8: 0 → 1 → 0 → 1 …

0: corresponding LED is OFF

1: corresponding LED is ON

- S3: Send the programmed byte to the P89LPC932 when programming has been done. LD13 to LD20 display

the programmed byte value when command has been sent

0: corresponding LED is OFF

1: corresponding LED is ON

- S4: Reset the programming and the value sent to the P89LPC932. LD1 to LD8, LD13 to LD20 are OFF.

- S5: Increase position of the bit to be programmed: 0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 0 → …

- S8: Jump to the next program (Program 4)

P

A

T

T

E

R

N

1

COMMAND 1.1

COMMAND 1.2

COMMAND 1.N

P

A

T

T

E

R

N

2

COMMAND 2.1

COMMAND 2.2

COMMAND 2.M

P

A

T

T

E

R

N

X

E

N

D

END

INSTRUCTION

COMMAND X.1

COMMAND X.2

COMMAND X.Y

N1

bytes

N2

bytes

C

O

M

M

A

N

D

C

O

M

M

A

N

D

1.1

1.2

00

01

02

03

04

05

N1-1

N1

N1+1

N1+2

N1+3

N1+4

N1+5

N1+ N2-1

Number of bytes = N1

Function Number 1 = 0x01

Delay between commands

I2C Address

Data (1)

Data (2)

Data (N1-4)

Number of bytes = N2

Function Number 1 = 0x01

Delay between commands

I2C Address

Data (1)

Data (2)

Data (N2-4)

N1-1

N1

Number of bytes = 2

Function End = 0x99

Total umber of bytes

for this command

Function (Pattern)

identifier

Programmable delay

between commands

End of data identifier

Memory location Data

 14

• Program 4 (LD9 = ON, LD10 = ON): I
2
C address search

Program 4 uses the P89LV51RD2/PCA9564 as an I2C master and the P89LPC932 (with jumpers JP19 to JP21) as

an I2C slave. In this mode, the PCA9564 searches for the P89LPC932’s I2C slave address (JP19 to JP21 programs

the 3 LSB’s of the P89LPC932 I2C slave address, the 4 MSB’s of the address are fixed. The address is unknown to

the P89LV51RD2)

Action on the pushbuttons:

- S1: Initiates the P89LPC932’s I2C address search routine

- S2: Resets the P89LV51RD2 search routine algorithm and initiates a P89LPC932 I2C address scanning and

memorization. The P89LPC932 scans its GPIO’s in order to memorize logic values associated with

jumpers JP19 to JP21.

- S8: Jump to the next program (Program 1)

LD11 and LD12 provide the following information:

- LD11 = OFF → I2C address not found or search routine not performed yet

- LD11 = ON → I2C address search routine successful

- LD12 = OFF → search routine not performed yet

- LD12 = ON → search routine performed and I2C address not found

Embedded programs flowcharts

Program Selection

Figure 5. Program selection

Power – up or

RESET pushbutton (S9) pushed

PROGRAM 1

S8 pushed?
NO

YES

PROGRAM 2

S8 pushed?
NO

YES

PROGRAM 3

S8 pushed?
NO

YES

PROGRAM 4

S8 pushed?
NO

YES

LD9 = OFF

LD10 = OFF

LD[1:8] = default blinking rate

LD11 = OFF

LD12 = OFF

LD[13:20] = OFF

LD[21:23] = OFF

LD9 = ON

LD10 = OFF

LD[1:8] = OFF

LD11 = OFF

LD12 = OFF

LD[13:20] = OFF

LD[21:23] = OFF

LD9 = OFF

LD10 = ON

LD[1:8] = OFF

LD11 = OFF

LD12 = OFF

LD[13:20] = OFF

LD[21:23] = OFF

LD9 = ON

LD10 = ON

LD[1:8] = OFF

LD11 = OFF

LD12 = OFF

LD[13:20] = OFF

LD[21:23] = OFF

LD9 = ON

LD10 = ON

LD11 = ON

LD12 = ON

LD[1:8] = OFF

LD[13:20] = OFF

LD[21:23] = OFF

NO PROGRAM

SELECTED

S8 pushed?
NO

YES

STATES of LEDs when entering the programs

Note:

At power up or when an action on the RESET pushbutton is

performed, no program is selected and LD9 to LD12 are ON.

 15

Program 1: P89LV51RD2–PCA9564–PCA9531; PCA9531 dynamic programming

Figure 6. Program 1 – PCA9531 dynamic programming

LD1 to LD4 blinking at 0.5 s, 50 %

LD5 to LD8 blinking at 0.5 s, 50 %

LD11 = OFF, LD12 = ON

S4 pushed?
YES

NO

S3 pushed?
YES

NO

S1 pushed?
YES

NO

LD12 = OFF

New PSC0 =

Programmed PSC0 + 1

S5 pushed?
YES

NO

LD12 = OFF

New PSC0 =

Programmed PSC0 – 1

S2 pushed?
YES

NO

LD12 = OFF

New PWM0 =

Programmed PWM0 + 1

S6 pushed?
YES

NO

LD12 = OFF

New PWM0 =

Programmed PWM0 - 1

S4 pushed?
YES

NO

S3 pushed?
YES

NO

S1 pushed?

YES

NO

LD12 = OFF

New PSC1 =

Programmed PSC1 + 1

S5 pushed?

YES

NO

LD12 = OFF

New PSC1 =

Programmed PSC1 – 1

S2 pushed?
YES

NO

LD12 = OFF

New PWM1 =

Programmed PWM1 + 1

S6 pushed?
YES

NO

LD12 = OFF

New PWM1 =

Programmed PWM1 – 1

LD11 = ON

LD11 = OFF

NO

S7 pushed?

NO

YES LD12 = OFF - Read LS0

If LED at BR0, then OFF

If LED OFF, then LED at BR0

S7 pushed?
YES

NO

LD12 = OFF - Read LS1

If LED at BR1, then OFF

If LED OFF, then LED at BR1

Notes:

- Increment is blocked when Value = 0xFF

- Decrement is blocked when Value = 0x00

- Increment/Decrement pushbuttons have 2

modes:

a) One shot: Single Increment/Decrement

when a single push and then release done

b) Continuous Increment/Decrement until

Value = 0xFF/0x00 when the

corresponding pushbutton is kept pressed

S1

PSC

-

S2

PWM

-

S3

BR0

BR1

S4

INIT

S5

PSC

+

S6

PWM

+

S7

OFF

BRx

S8

CHGE

PRG

PUSHBUTTONS

 16

Program 2: P89LV51RD2–PCA9564–PCA9531–PCF85116–P89LPC932; Predefined blinking patterns

Figure 7. Program 2 – Preprogrammed blinking patterns

Program 3: P89LV51RD2–PCA9564–PCA9531–P89LPC932; P89LPC932 LED programming

Figure 8. Program 3 – P89LPC932 LED programming

LD1 to LD8 = OFF

LD13 to LD20 = OFF

LD11 = OFF, LD12 = OFF
Bit_Position = 0

Bit_Value = 0

Data[7:0] = 0

S4 pushed?
YES

NO

S1 pushed?

YES

S5 pushed?

YES

NO

S2 pushed?

YES

NO

S3 pushed?

YES

S1

BIT

-

S2

0 / 1

S3

SND

DATA

S4

RST

S5

BIT

+

S6

NOT

USED

S7

NOT

USED

S8

CHGE

PRG

PUSHBUTTONS

If Bit_Position = 7, then Bit_Position = 0

Else Increment Bit_Position

If Data[Bit_Position] = 0 then Data[Bit_Position] = 1

If Data[Bit_Position] = 1 then Data[Bit_Position] = 0

LD[Bit_Position+1] = Data[Bit_Position]

Program P89LPC932 with the programmed byte

Sequence = Start – Address+W – 0x00 – Data[7:0] – Stop

LD13 to LD20 display the programmed byte

If Bit_Position = 0, then Bit_Position = 7

Else Decrement Bit_Position

NO

NO

LD1 to LD8 = OFF

LD13 to LD20 = OFF

LD11 = OFF, LD12 = OFF
Scan_Done = 0

Pattern_Number = 1

NO

S4 pushed?
YES

S5 pushed?
YES

NO

S1

NOT

USED

S2

NOT

USED

S3

NOT

USED

S4

EE

CHK

S5

PRG

CHGE

S6

NOT

USED

S7

NOT

USED

S8

CHGE

PRG

PUSHBUTTONS

1. If Pattern_Number ≠ 4 then Increase Pattern_Number

If Pattern_Number = 4 then Pattern_Number = 1
2. Display Pattern_Number using LD13 to LD20
3. Read each I2C command in the EEPROM between Min

[Pattern_Number] and Max[Pattern_Number]
4. Send data read from EEPROM
5. Loop between 3) and 4) until S5 pushed again

Scan the PCF85116 EEPROM

First and last cell number for each preprogrammed pattern are

memorized by the P89LV51RD2

Min and Max for each pattern

Scan_Done = 1
NO

Scan_Done =1 ?
NO

YES

 17

Program 4: P89LV51RD2–PCA9564–PCA9531–P89LPC932; I
2
C address search

Figure 9. Program 4 – I
2
C address search

LD1 to LD8 = OFF

LD13 to LD20 = OFF

LD11 = OFF, LD12 = OFF

I2C_Address = 0x00

S1 pushed?
YES

S2 pushed?

YES

NO

S1

STRT

S2

RST

S3

NOT

USED

S4

NOT

USED

S5

NOT

USED

S6

NOT

USED

S7

NOT

USED

S8

CHGE

PRG

PUSHBUTTONS

NO

I2C_Address = I2C_Address + 1

Send: S – I2C_Address + W

ACK?

I2C_Address

= 0xFF?

YES
LD12 = ON (search failed), LD11 = OFF

NO

Send:

0xFF – Sr – I2C_Address + R

Read Data from slave device – P

Data =

I2C_Address?

NO

YES

YES

LD11 = ON (search successful), LD12 = OFF

LD14 to LD20 display I2C_Address (7 bits)

LD13 = OFF

S – I2C_Address+W – 0x00 – I2C_Address – P

NO

LD11 = OFF, LD12 = OFF

Switch off LED[13:20]:

S – Address+W – 0x00 – 0xFF – P

Scan and reprogram I2C Address:

S – Address+W – 0xEE – P

 18

Source Code P89LV51RD2 – Rev 1.0

P89LV51RD2/PCA9564 source code of the embedded software is organized in several files written in C language.

Modularity of the files allows building applications using an 8051-core microcontroller and a PCA9564 in an easy and

intuitive way. Most of the files are core independent and can be used with different types of microcontrollers. Only the

file generating the control signals and receiving/transmitting data is subject to modification depending on the type of

microcontroller used.

The code in C language is divided in several files, organized as following:

1. I2CEXPRT.H:

2. Contains the definition of the different structures and functions used in the code.

3. Mainloop.c:

Contains the main running loop:

- Initialization at power up or reset

- Call to the function handling the program selection

4. I2C_Routines.c and I2C_Routines.h:

Contain the different programs selectable by the user. These files are generally those that need to be modified in

order to develop specific programs or functions. Main functions are:

- void Blinker_Up_Down(void): Function for Program 1

- void ReadEEprom(short int MinEEPtr, short int MaxEEPtr, int Operation_EEprom, int Operation_Function)

and void Preset_Patterns_PCA9532(void): Functions for Program 2

- void LV51_LPC932(void): Function for Program 3

- unsigned char Search_Routine(unsigned char min, unsigned char max) and void I2C_Address_Search(void):

Functions for Program 4

- void GPIO_Interrupt_Handler(void): Function handling actions on pushbuttons S1 to S8

5. I2CDRIVR.C and I2CDRIVR.H:

Handle the selection between master and slave mode.

6. I2CMASTR.C and I2CMASTR.h:

Contain the functions handling the Master Transmitter and Master Receiver modes. Handle the different states of

the state machine and generate the sequencing of the commands based upon the previous command and the status

information. Interface directly with the PCA9564 (read and write in a specific register)

7. I2CINTFC.C:

Contains the description of the top functions used to send and receive I2C messages:

- Start, Write, Stop

- Start, Read, Stop

- Start, Write, Repeated Start, Read, Stop

- Start, Write, Repeated Start, Write, Stop

8. PCA9564sys.c and PCA9564sys.h:

Contain the actual interface between the microcontroller and the PCA9564: control signal generation, data writing

and reading. This file is specific to an 8051-type microcontroller and needs to be changed if another type of

microcontroller is used to interface with the PCA9564.

9. Interrupts.c:
Contains the definition of the Interrupts – Not used in this program – For future reference

Complete source code can be found in Appendix 1 “P89LV51RD2 Microcontroller Source Code – Rev1.0”.

Source Code P89LPC932 – Rev 1.0

P89LPC932 microcontroller is used as a slave device with the default embedded programs and use only the slave part of

the I2C core.

1. main.c:

Contains the instructions to interface with the P89LV51RD2/PCA9564 default embedded program:

a) Instruction controlling LD[13:20]: S – Address+W – 0x00 – Data[7:0] – P

- Data[0] = state LD13

- Data[7] = state LD20

b) Instruction controlling the “I2C address Scan and Memorize” procedure: S – Address+W – 0xEE – P

c) Instruction allowing reading back the I2C slave address: S – Address+W – 0xFF – Sr – Address+R – Data – P

with Data = I2C slave address

 19

2. i2cslave.c:

Contains the source code of the I2C slave core

3. ua_exprt.h:

Contains the definition of variables used in the I2C slave core

Complete source code can be found in Appendix 2 “P89LPC932 Microcontroller Source Code – Rev1.0”.

Download software, programs and documentation
• The Raisonance free evaluation development kit can be downloaded from: http://www.amrai.com/amrai.htm

1. In the “Software” yellow box, select 8051

2. Fill the form

3. Download the “kit51.exe” file and the “GettingStartedManual.pdf”

4. Install the software by running “kit51.exe”

The Raisonance 8051 Development Kit is a complete solution to creating software for the 8051 family family of

microcontroller. The Development Kit comprises many different tools that allow projects ranging from simple to

highly complex to be developed with relative ease. The free evaluation version can be used to develop up to 4 kbits

of code that can be loaded into the P89LV51 or P89LPC932 by using Flash Magic software.

• Flash Magic software from Embedded Systems Academy can be downloaded from:

http://www.esacademy.com/software/flashmagic/

1. In the download section (bottom of the page), download the file using http or ftp

2. Install the software using the downloaded “.exe” file

Flash Magic is a free, powerful, feature-rich Windows application that allows easy programming of Philips Flash

Microcontrollers.

• All the information about Philips microcontrollers (Datasheets, Application Notes, Support Tools…) can be found

in the Philips microcontroller homepage at:

http://www.semiconductors.philips.com/markets/mms/products/microcontrollers/

PCA9564 evaluation board web page
PCA9564 evaluation board homepage that can be found at:

http://www.standardproducts.philips.com/support/boards/pca9564

It contains the following:

- Source code in C-language for the manufacturing default firmware used in the P89LV51RD2 and P89LPC932

- Application Note AN10148 and AN10149

- Datasheet of the different I2C slave devices and µcontrollers used in the PCA9564 evaluation board

- Links to the 3rd party tools (Flash Magic, Raisonance)

- IBIS model

- How to order the PCA9564 Evaluation Board

- …

 20

Appendix 1: P89LV51RD2 Microcontroller Source Code – Rev 1.0

I2CEXPRT.H
//***
//
// P H I L I P S P R O P R I E T A R Y
//
// COPYRIGHT (c) 2003 BY PHILIPS SEMICONDUCTORS
// -- ALL RIGHTS RESERVED --
//
// File Name: i2cexpert.h
// Created: June 2, 2003
// Modified: June 4, 2003
// Revision: 1.00
//
//***

#include <REG51RX.H>

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long LONG;

typedef struct // each message is configured as follows:
{
 BYTE address; // slave address to sent/receive message
 BYTE nrBytes; // number of bytes in message buffer
 BYTE *buf; // pointer to application message buffer
} I2C_MESSAGE;

typedef struct // structure of a complete transfer
{ // made up of a number of messages and pointers to the messages
 BYTE nrMessages; // number of message in one transfer
 I2C_MESSAGE **p_message; // pointer to pointer to message
} I2C_TRANSFER;

/**/
/* E X P O R T E D D A T A D E C L A R A T I O N S
/**/

#define FALSE 0
#define TRUE 1

#define I2C_WR 0
#define I2C_RD 1

#define PCA9531_WR 0xC8 // i2c address LED Dimmer - Write operation
#define PCA9531_RD 0xC9 // i2c address LED Dimmer - Read operation
#define PCA9554_WR 0x7E // i2c address i/o expander - Write operation
#define PCA9554_RD 0x7F // i2c address i/o expander - Read operation

/**** Status Errors ****/

#define I2C_OK 0 // transfer ended No Errors
#define I2C_BUSY 1 // transfer busy
#define I2C_ERROR 2 // err: general error
#define I2C_NO_DATA 3 // err: No data in block
#define I2C_NACK_ON_DATA 4 // err: No ack on data
#define I2C_NACK_ON_ADDRESS 5 // err: No ack on address
#define I2C_DEVICE_NOT_PRESENT 6 // err: Device not present
#define I2C_ARBITRATION_LOST 7 // err: Arbitration lost
#define I2C_TIME_OUT 8 // err: Time out occurred
#define I2C_SLAVE_ERROR \ 9 // err: Slave mode error
#define I2C_INIT_ERROR 10 // err: Initialization (not done)
#define I2C_RETRIES 11 // err: Initialization (not done)

/**/
/* I N T E R F A C E F U N C T I O N P R O T O T Y P E S
/**/

extern void I2C_InitializeMaster(BYTE speed);
extern void I2C_InitializeSlave(BYTE slv, BYTE *buf, BYTE size, BYTE speed);
extern void I2C_InstallInterrupt(BYTE vector);
extern void I2C_Interrupt(void);

extern void I2C_Write(I2C_MESSAGE *msg);
extern void I2C_WriteRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);

 21

extern void I2C_WriteRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);
extern void I2C_Read(I2C_MESSAGE *msg);
extern void I2C_ReadRepRead(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);
extern void I2C_ReadRepWrite(I2C_MESSAGE *msg1, I2C_MESSAGE *msg2);

extern void Blinker_Up_Down(void);
extern void LV51_LPC932(void);
extern void ReadEEprom(short int MinEEPtr, short int MaxEEPtr, int Operation_EEprom, int Operation_Function);
extern void Preset_Patterns_PCA9532(void);
extern void I2C_Address_Search(void);
extern void Init_Slaves(void);
extern void Init_LPC932(void);
extern unsigned char Search_Routine(unsigned char min, unsigned char max);
extern void GPIO_Interrupt_Handler(void);
extern void InsertDelay(unsigned char delayTime);

static sbit LED0 = P2^2; // LD[9:12] mapped with LV51's P2[2:5]
static sbit LED1 = P2^3;
static sbit LED2 = P2^4;
static sbit LED3 = P2^5;

static sbit PCA9554_Int = P3^2; // Interrupt PCA9554 mapped with LV51's P3[2]
sbit PCA9564_Reset = P3^4; // Reset PCA9564 mapped with LV51's P3[4]

Mainloop.c

//***
//
// P H I L I P S P R O P R I E T A R Y
//
// COPYRIGHT (c) 2003 BY PHILIPS SEMICONDUCTORS
// -- ALL RIGHTS RESERVED --
//
// File Name: mainloop.c
// Created: June 2, 2003
// Modified: November 07, 2003
// Revision: 1.00
//
//***

#include <REG51RX.H>
#include "i2cexprt.h"
#include "PCA9564sys.h"
#include "I2C_Routines.h"

idata BYTE Buffer1[32];
idata BYTE Buffer2[32];
idata BYTE Buffer3[16];
idata BYTE Buffer4[16];

idata I2C_MESSAGE Message1;
idata I2C_MESSAGE Message2;
idata I2C_MESSAGE Message3;
idata I2C_MESSAGE Message4;

static short int ProgramCounter = 0;

//**
// Initialization Functions at power up, Reset or program change
//**

static void Init_PCA9564(void)
{
 PCA9564_Reset = 1;
 PCA9564_Reset = 0;
 InsertDelay(1); // PCA9564 reset time = 1 ms
 PCA9564_Reset = 1;
 AUXR = 2; // External memory space
 I2C_InitializeMaster(0x00); // 330 kHz
}

static void Init_Slaves(void)
{
 Message1.address = PCA9531_WR;
Message1.buf = Buffer1;
Message1.nrBytes = 7;
Buffer1[0] = 0x11; // autoincrement + register 1
Buffer1[1] = 0x80; // default prescaler pwm0
Buffer1[2] = 0x80; // default duty cycle for pwm0
Buffer1[3] = 0x80; // default prescaler pwm1
Buffer1[4] = 0x80; // default duty cycle for pwm1

 22

Buffer1[5] = 0x00; // LD1 to LD4 off
Buffer1[6] = 0x00; // LD5 to LD8 off

I2C_Write(&Message1); // LD[1:8] off

Message2.address = PCA9554_WR;

 Message2.buf = Buffer2;
 Message2.nrBytes = 1;
 Buffer2[0] = 0; // subaddress = 0

 Message3.address = PCA9554_RD;
 Message3.buf = Buffer3;
 Message3.nrBytes = 1; // read one byte
}

//**
// Delay time in milliseconds
// Insert a wait into the program flow
// Use Timer 1
// Do not use an interrupt
// Oscillator running at 11.0592 MHz
// 6 clock cycles per clock tick
// Therefore, we need 1843 cycles for 1msec
//**

void InsertDelay(unsigned char delayTime)
{
unsigned char i;

TMOD = (TMOD & 0x0F) | 0x01; // 16-bit timer
TR1 = 0;
for (i=0;i<delayTime;i++)
{

 TF1 = 0;
 TH1 = 0xF8; // set timer1 to 1843
 TL1 = 0xCD; // since it's an up-timer, use (65536-1843) = 63693 = F8CD
 TR1 = 1; // Start timer
 while(TF1==0); // wait until Timer1 overflows
}

}

//***
// Toggles pushbutton S8 in order to determine which program the user wants to run
//***

static void Program_Selection(void)
{
 if (Buffer3[0] == 0x7F) // Push on S8 detected
 {
 if (ProgramCounter < 4)
 {
 ProgramCounter++; // Program selection incremented
 }
 else
 {
 ProgramCounter = 1; // Program selection back to 1
 }
 }
 switch (ProgramCounter)
 {
 case 1 : LED0 = 1; // LD9 off
 LED1 = 1; // LD10 off
 Buffer3[0] = 0xFF;
 Blinker_Up_Down(); // Blinker PSC and PWM Up/down program is selected
 break;
 case 2 : LED0 = 0; // LD9 on
 LED1 = 1; // LD10 off
 Buffer3[0] = 0xFF;
 Preset_Patterns_PCA9531(); // PCA9531 preset patterns program selected
 break;
 case 3 : LED0 = 1; // LD9 off
 LED1 = 0; // LD10 on
 Buffer3[0] = 0xFF;
 LV51_LPC932(); // LPC932 LED programming program is selected
 break;

 case 4 : LED0 = 0; // LD9 on
 LED1 = 0; // LD10 on
 Buffer3[0] = 0xFF;
 I2C_Address_Search(); // LPC932 I2C address search program selected
 break;

 23

 }
}

//**
// Main program
//**

void main(void)
{
 Init_PCA9564(); // Initialization PCA9564
 Init_Slaves(); // Initialization slave devices
 Init_LPC932(); // Initialization LPC932
 LED0 = 0; // LD9 on at power up or after reset
 LED1 = 0; // LD10 on at power up or after reset
 LED2 = 0; // LD11 on at power up or after reset
 LED3 = 0; // LD12 on at power up or after reset

 while (1)
{

 GPIO_Interrupt_Handler();
 Program_Selection(); // Toggles S8 in order to determine which program is selected by the user
 }
}

I2C_Routines.h

//***
//
// P H I L I P S P R O P R I E T A R Y
//
// COPYRIGHT (c) 2003 BY PHILIPS SEMICONDUCTORS
// -- ALL RIGHTS RESERVED --
//
// File Name: I2C_Routines.c
// Created: June 2, 2003
// Modified: November 07, 2003
// Revision: 1.00
//
//***

unsigned char Search_Routine(unsigned char min, unsigned char max);
void GPIO_Interrupt_Handler(void);
void Blinker_Up_Down(void);
void ReadEEprom(short int MinEEPtr, short int MaxEEPtr, int Operation_EEprom, int Operation_Function);
void Preset_Patterns_PCA9531(void);
void LV51_LPC932(void);
void I2C_Address_Search(void);

I2C_Routines.c

//***
//
// P H I L I P S P R O P R I E T A R Y
//
// COPYRIGHT (c) 2003 BY PHILIPS SEMICONDUCTORS
// -- ALL RIGHTS RESERVED --
//
// File Name: I2C_Routines.c
// Created: June 2, 2003
// Modified: November 07, 2003
// Revision: 1.00
//
//***

#include <REG51RX.H>
#include "i2cexprt.h"
#include "PCA9564sys.h"

idata BYTE Snapshot_1 = 0x0F;
idata BYTE Snapshot_2 = 0x00;
int Trigger_GPIO_Polling;
int Search_Successful = 0;
unsigned char Data_Received;
unsigned char LPC932_WR;
unsigned char LPC932_RD;

extern unsigned char LPC932_WR;
extern unsigned char LPC932_RD;

 24

extern unsigned char CRX;

extern idata BYTE Buffer1[32];
extern idata BYTE Buffer2[32];
extern idata BYTE Buffer3[16];
extern idata BYTE Buffer4[16];

extern idata I2C_MESSAGE Message1;
extern idata I2C_MESSAGE Message2;
extern idata I2C_MESSAGE Message3;
extern idata I2C_MESSAGE Message4;

//**
// I2C Address Search Routine
// Make the search between min and max
// Return the I2C Address and set the Search_Successful bit
// to 1 when search has been successful
//**

unsigned char Search_Routine(unsigned char min, unsigned char max)
{
 unsigned char I2C_Address_Write;
 unsigned char I2C_Address_Read;
 unsigned char Address_Sent_Status;
 unsigned char Command_Sent_Status;
 unsigned char Counter_I2C_Address_Write = min;
 unsigned char Counter_I2C_Address_Read = min+1;

 int i;

 Search_Successful = 0;

 while (Counter_I2C_Address_Write != max & Search_Successful == 0) // Search routine starts
{

 Counter_I2C_Address_Write++;
 Counter_I2C_Address_Write++; // Increment I2C Address Write (+2)
 Counter_I2C_Address_Read++;
 Counter_I2C_Address_Read++; // Increment I2C Address Read (+2)
 I2C_Address_Write = Counter_I2C_Address_Write;
 I2C_Address_Read = Counter_I2C_Address_Read;
 PCA9564_Write(I2CCON,0xE0 | CRX); // 1110 0xxx -> generate Start
 for (i=0; i < 200;i++);
 PCA9564_Write(I2CDAT,I2C_Address_Write); // Send Address Byte + W
 for (i=0; i < 200;i++);
 PCA9564_Write(I2CCON,0xC0 | CRX); // I2CCON=11000xxx
 for (i=0; i < 200;i++);
 Address_Sent_Status = PCA9564_Read(I2CSTA); // Read status Register
 switch (Address_Sent_Status)
 {
 case 0x18 : //Ack received
 PCA9564_Write(I2CDAT,0xFF); // send Command byte (0xFF)
 for (i=0; i < 200;i++);
 PCA9564_Write(I2CCON,0xC0 | CRX); // I2CCON=11000xxx
 for (i=0; i < 200;i++);
 Command_Sent_Status = PCA9564_Read(I2CSTA);
 PCA9564_Write(I2CCON,0xD0 | CRX); // send Stop
 for (i=0; i < 200;i++);
 if (Command_Sent_Status == 0x28) // Command byte has been ack'ed
 {
 PCA9564_Write(I2CCON,0xE0 | CRX); // 1110 0xxx -> generate Start
 for (i=0; i < 200;i++);
 Command_Sent_Status = PCA9564_Read(I2CSTA);
 if (Command_Sent_Status == 0x08) // Start = OK
 {
 PCA9564_Write(I2CDAT,I2C_Address_Read); // send Address Byte + R
 for (i=0; i < 200;i++);
 PCA9564_Write(I2CCON,0xC0 | CRX); // I2CCON=11000xxx
 for (i=0; i < 200;i++);
 Command_Sent_Status = PCA9564_Read(I2CSTA);
 if (Command_Sent_Status == 0x40) // Addr + R = OK
 {
 PCA9564_Write(I2CCON,0x40 | CRX); // Read Data and NACK
 for (i=0; i < 200;i++);
 Data_Received = PCA9564_Read(I2CDAT);
 }
 }
 }
 PCA9564_Write(I2CCON,0xD0 | CRX); // send Stop
 if (Data_Received == I2C_Address_Write)
 {
 Search_Successful = 1; // Search successful if Read Data = Address

 25

 }
 else
 {
 Search_Successful = 0; // Search unsuccessful if Read Data != Address
 }
 break;
 case 0x20 : // no Ack received
 PCA9564_Write(I2CCON,0xD0 | CRX); // I2CCON=11010xxx -> Stop condition
 break;
 }

Address_Sent_Status = 0x00;
 Command_Sent_Status = 0x00;
 }
 return I2C_Address_Write;
}

//**
// GPIO Interrupt Handling function
// One shot mode (through /INT) or
// permanent action detection (then Input PCA9554 Reg# polling)
//**

 void GPIO_Interrupt_Handler(void)
{
 Message2.address = PCA9554_WR;
 Message2.buf = Buffer2;
 Message2.nrBytes = 1;
 Buffer2[0] = 0; // subaddress = 0

 Message3.address = PCA9554_RD;
 Message3.buf = Buffer3;
 Message3.nrBytes = 1; // read one byte

 if (PCA9554_Int==0) // Action on pushbutton detected
 {
 I2C_WriteRepRead(&Message2,&Message3); // 1st read the PCA9554
 if (Buffer3[0] != 0xFF)
 {
 Snapshot_1 = Buffer3[0]; // load the 1st read data in a temp memory
 }
 InsertDelay(255); // Delay between 2 snapshots to detect if pushbutton is
 InsertDelay(255); // still pressed or has been released
 InsertDelay(255);
 I2C_WriteRepRead(&Message2,&Message3); // 2nd read the PCA9554
 Snapshot_2 = Buffer3[0]; // load the 2nd read data in a temp memory

if (Snapshot_1 == Snapshot_2) // Compare the 2 read data in the temp memories
 {
 Trigger_GPIO_Polling = 1; // permanent push detected when 1st and 2nd readings equal
 }
 else
 {
 Trigger_GPIO_Polling = 0; // single shot action when 1st and 2nd readings different
 Buffer3[0] = Snapshot_1; // Buffer loaded again with the initial push value
 }
 }
 if (Trigger_GPIO_Polling == 1) // Start Polling PCA9554 when permanent push detected
 {
 I2C_WriteRepRead(&Message2,&Message3);
 }
}

/**
// Program 1: P89LV51 <--> PCA9564 <--> PCA9531
// Through Pushbuttons, BR0 and BR1 can be selected
// Once BR selected, PSC and PWM registers
// can be incremented / decremented
//**

static int BR_Select = 0;

void Blinker_Up_Down(void)
{
 idata BYTE Frequency_0;
 idata BYTE DutyCycle_0;
 idata BYTE Frequency_1;
 idata BYTE DutyCycle_1;

 LED2 = 1; // LD11 off
 LED3 = 0; // LD12 on --> PCA9531 programmed with default blinking rate

	Contact us

