

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OP165, OP166 Series

Features:

- T-1 (3 mm) package style
- Choice of narrow or wide irradiance pattern
- Choice of dome lens or flat lens
- Mechanically and spectrally matched to other OPTEK devices
- Higher power output than GaAs at equivalent drive currents
- 935 nm diode

Description:

Each device in the **OP165** and **OP166** series is a high intensity gallium arsenide infrared emitting diode (GaAIAs) that is molded in an IR transmissive clear epoxy package with either a dome or flat lens. Devices feature narrow and wide irradiance patterns and a variety of electrical characteristics. The small T-1 package style makes these devices ideal for space -limited applications.

OP165 and OP166 devices are mechanically and spectrally matched to the OP505 and OP535 series devices.

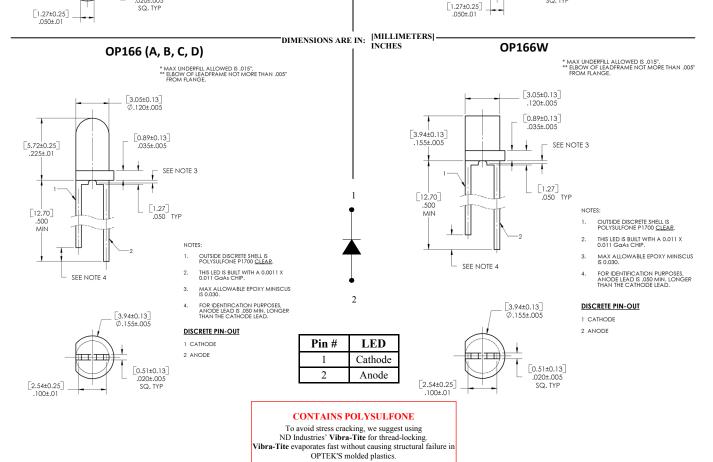
Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

- Space-limited applications
- Applications requiring coupling efficiency
- Battery-operated or voltage-limited applications

Ordering Information									
Part Number	LED Peak Wavelength	Output Power (mW/cm²) Min / Max	I _F (mA) Typ / Max	Total Beam Angle	Lead Length				
OP165A	935 nm	1.95 / NA		18°	. 0.50"				
OP165B		1.40 / 2.20	20 / 50						
OP165C		0.85 / 1.60							
OP165D		0.28 / NA							
OP165W		0.50 / NA		90°					
OP166A		1.95 / NA		18°					
OP166B		1.40 / 2.20							
OP166C		0.85 / 1.60							
OP166D		0.28 / NA							
OP166W		0.50 / NA		90°					

OP165, OP166 Series



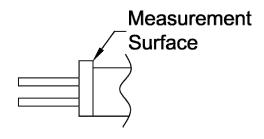
OP165 (A, B, C, D) [3.05±0.13] Ø.120±.005 [5.72±0.25] .225±.01 [0.89±0.13] .035±.005 SEE NOTE 3 * MAX UNDERFILL ALLOWED IS .015". [17.15±0] .675±.000 OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700 CLEAR. THIS LED IS BUILT WITH A 0.0011 X 0.011 GaAs CHIP. SEE NOTE 4 **DISCRETE PIN-OUT** [3.94±0.13] Ø.155±.005 1 CATHODE 2 ANODE □: [0.51±0.13]

OP165W [3,05±0.13] .120±.005 .089±0.13] .055±.005 SEE NOTE 3 *MAX UNDERFILL ALLOWED IS .015". NOTES: 1. OUTSIDE DISCRETE SHELL IS POLYSUIFONE P1700 CIEAB. 2. THIS LED IS BUILT WITH A 0.011 X 0.011 GaAS cHIP. 3. MAX ALLOWABLE EPOXY MINIBCUS IS 0.030. 4. FOR IDENTIFICATION PURPOSES, ANDOE LEAD IS .065 ± .035 LONGER THAN THE CATHODE LEAD. [3,94±0.13] Ø.155±.005 DISCRETE PIN-OUT 1 CATHODE 2 ANODE

[0.51±0.13]

.020±.005

OP165, OP166 Series

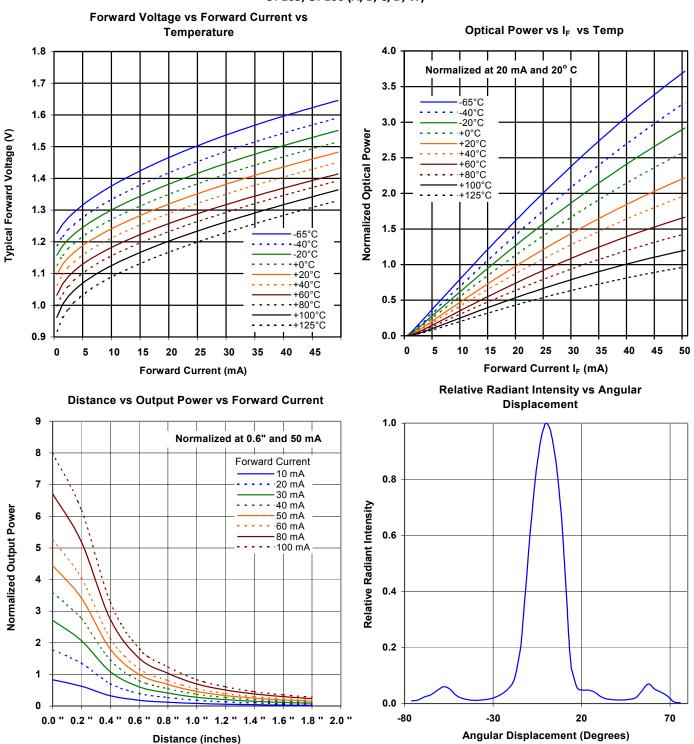

Electrical Specifications

bsolute Maximum Ratings (T _A = 25° C unless otherwise noted)				
Storage and Operating Temperature Range	-40°C to +100°C			
Reverse Voltage	2.0 V			
Continuous Forward Current	50 mA			
Peak Forward Current (1 μs pulse width, 300 pps)	3.0 A			
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C			
Power Dissipation	100 mW ⁽¹⁾			

Electrical Characteristics (T _A = 25° C unless otherwise noted)								
SYMBOL	PARAMETER		TYP	MAX	UNITS	TEST CONDITIONS		
Input Diode								
E _{E (APT)}	Apertured Radiant Incidence OP165A, OP166A		-	-	mW/cm²	I _F = 20 mA ⁽²⁾		
Po	Radiant Power Output OP165W, OP166W	0.50	-	-	mW	I _F = 20 mA		
V _F	Forward Voltage	-	-	1.60	V	I _F = 20 mA		
I_{R}	Reverse Current	-	-	100	μA	V _R = 2 V		
λ_{P}	Wavelength at Peak Emission		935	-	nm	I _F = 10 mA		
В	Spectral Bandwidth between Half Power Points	-	50	-	nm	I _F = 10 mA		
$\Delta \lambda_{\scriptscriptstyle P} / \Delta T$	Spectral Shift with Temperature OP165, OP166 (A, B, C, D) OP165W, OP166W	- -	- ±0.30	- -	nm/°C	I _F = Constant		
θ_{HP}	Emission Angle at Half Power Points OP165, OP166 (A, B, C, D) OP165W, OP166W		18 90		Degree	I _F = 20 mA		
t _r	Output Rise Time	-	1000	-	ns	I _{F(PK)} =100 mA, PW=10 μs, D.C.=10.0 %		
t _f	Output Fall Time	-	500	-	ns			

Notes:

- 1. Derate linearly 1.33 mW/°C above 25°C
- 2. $E_{E(APT)}$ is a measurement of the average apertured rediant incidence ipon a sensing area 0.081" (2.06 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99 mm) from the measurement surface. $E_{E(APT)}$ is not necessarily uniform within the measured areas.



OP165, OP166 Series

Performance

OP165, OP166 (A, B, C, D, W)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OPTEK Technology, Inc. 1645 Wallace Drive, Carrollton, TX 75006lPh: +1 972 323 2200 www.optekinc.com | www.ttelectronics.com