: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Plastic Infrared Emitting Diode
 OP168F, OP169, OP268F, OP269 Series

Description:

Each diode in this series is molded into an end-looking plastic package. The package for all OP168F and OP268F devices is black, whereas the package for all OP169 and OP269 packages is clear. OP168F and OP169 devices are GaAs. OP268F and OP269 devices are GaAIAs.

Due to their small size, all diodes in this series offer considerable design flexibility.
The OP168F and OP268F series are mechanically and spectrally matched to the OP508F series phototransistor and the OP538F series photodarlingtons. The OP169 and OP269 series are mechanically and spectrally matched to the OP509 series phototransistors.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

For custom screening contact your OPTEK representative.

Applications:

- Space-limited applications
- Excellent design flexibility
- PCBoard mounted slotted switch
- PCBoard interrupter

Ordering Information			
Part Number	LED Peak Wavelength	Total Beam Angle	Lead Length
OP168FB	935 nm	104°	0.50"
OP168FC			
OP169B	935 nm	18°	
OP169C			
OP268FA	890 nm	104°	
OP268FB			
OP268FC			
OP269A	890 nm	$18^{\prime \prime}$	

RoHS

Plastic Infrared Emitting Diode

 OP168F, OP169, OP268F, OP269 Series
TT Electronics

Plastic Infrared Emitting Diode

OP168F, OP169, OP268F, OP269 Series

Electrical Specifications

Absolute Maximum Ratings $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Storage and Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current (1 $\mu \mathrm{S}$ pulse width, 300 pps$)$ OP168, OP169, OP268, OP269 (A)	3.0 A
Lead Soldering Temperature $[1 / 16 \text { inch }(1.6 \mathrm{~mm}) \text { from case for } 5 \text { seconds with soldering iron }]^{(1)}$	$260^{\circ} \mathrm{C}$
Power Dissipation ${ }^{(2)}$	100 mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
$\mathrm{E}_{\mathrm{E}(\mathrm{APT})}{ }^{(3)}$	Apertured Radiant Incidence OP168FB OP168FC OP169B OP169C OP268FA OP268FB OP268FC OP269A	$\begin{aligned} & 0.43 \\ & 0.27 \\ & \\ & 0.11 \\ & 0.03 \\ & \\ & 0.64 \\ & 0.45 \\ & 0.36 \\ & \\ & 0.58 \end{aligned}$		$\begin{gathered} 0.73 \\ - \\ 0.22 \\ - \\ - \\ 0.99 \end{gathered}$	$\mathrm{mW} / \mathrm{cm}^{2}$	$I_{F}=20 \mathrm{~mA}$ Aperture = .081" dia. Distance $=.400$ " from tip of lens to aperture surface
V_{F}	Forward Voltage OP168, OP169 OP268, OP269			$\begin{aligned} & 1.40 \\ & 1.50 \end{aligned}$	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current OP168, OP169, OP268, OP269	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{~V}$
λ_{P}	Wavelength at Peak Emission OP168, OP169 OP268, OP269		$\begin{aligned} & 935 \\ & 890 \end{aligned}$		nm	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

Notes:

1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum of 20 grams force may be applied to the leads when soldering.
2. Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
3. For OP168 (FB, FC) and OP268 (FA, FB, FC), $\mathrm{E}_{\mathrm{E}(\mathrm{APT})}$ is a measurement of the average apertured radiant energy incident upon a sensing area $0.081^{\prime \prime}(2.06 \mathrm{~mm})$ in diameter perpendicular to and centered on the mechanical axis of the lens and 0.400 " (10.16 mm) from the measurement surface. For OP169 (B, C) and OP269 (A), $\mathrm{E}_{\mathrm{E}(\mathrm{APT})}$ is a measurement of the average apertured radiant energy incident upon a sensing area $0.180^{\prime \prime}(4.57 \mathrm{~mm})$ in diameter perpendicular to and centered on the mechanical axis of the lens and 0.653 " (16.6 mm) from the lens tip. NOTE: $\mathrm{E}_{\mathrm{E}(\text { APT })}$ is a measurement of the average radiant intensity within the cone formed by the above conditions. $\mathrm{E}_{\mathrm{E}(\mathrm{APT})}$ is not necessarily uniform within the measured area.

Plastic Infrared Emitting Diode

OP168F, OP169, OP268F, OP269 Series

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted- for reference only)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode

B	Spectral Bandwidth between Half Power Points OP168, OP169 OP268, OP269	-	$\begin{aligned} & 50 \\ & 80 \end{aligned}$		nm	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\Delta \lambda_{P} / \Delta T$	Spectral Shift with Temperature OP168, OP169 OP268, OP269	-	$\begin{aligned} & \pm 0.30 \\ & \pm 0.18 \end{aligned}$		$n \mathrm{~nm} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=$ Constant
$\theta_{\text {нр }}$	Emission Angle at Half Power Points OP168 OP169 OP268 OP269	- - -	$\begin{gathered} 104^{\circ} \\ 46^{\circ} \\ 104^{\circ} \\ 46^{\circ} \end{gathered}$	-	Degree	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
t_{r}	Rise Time OP168, OP169 OP268, OP269	-	$\begin{gathered} 1000 \\ 500 \end{gathered}$		ns	$\mathrm{I}_{\mathrm{F}(\mathrm{PK})}=100 \mathrm{~mA}, \mathrm{PW}=10 \mu \mathrm{~s}, \mathrm{D} . \mathrm{C} .=10 \%$
t_{f}	Fall Time OP168, OP169 OP268, OP269	-	$\begin{aligned} & 500 \\ & 250 \end{aligned}$		ns	$\mathrm{I}_{\mathrm{F}(\mathrm{PK})}=100 \mathrm{~mA}, \mathrm{PW}=10 \mu \mathrm{~s}, \mathrm{D} . \mathrm{C} .=10 \%$

Beam Angle OP169 \& OP269 Package

Plastic Infrared Emitting Diode OP168F, OP169, OP268F, OP269 Series

Performance

OP168 (FB, FC), OP169 (B, C)

Plastic Infrared Emitting Diode OP168F, OP169, OP268F, OP269 Series
 Electronics

Performance
OP268 (FA, FB, FC), OP269 (A)

