

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OP550, OP552, OP555, OP560, OP565, OP750, OP755 Series

Features:

- Wide receiving angle
- Four sensitivity ranges
- Side-looking package
- Ideal for space-limited applications
- Ideal for PCBoard mounting
- Choice of clear, opaque or blue-tinted package

Description:

OP550, OP552, OP555, OP750, OP755, OP770 and **OP775** series consists of a NPN silicon phototransistor molded in an epoxy package with a wide receiving angle that provides relatively even reception over a large area. The **OP750, OP755, OP770** and **OP775** have additional circuitry to enhance the operation of the device for stray light levels.

OP560 and **OP565** series consists of a NPN silicon photodarlington transistor molded in an epoxy package with a wide receiving angle that provides relatively even reception over a large area.

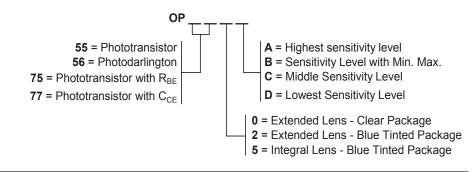
The side-looking package design allows easy PCBoard mounting of slotted optical switches or optical interrupt detectors.

The OP550, OP560, OP750 and OP770 devices have an external lens in a clear epoxy package.

The **OP552** device has an integral lens in an opaque plastic package that is optically transparent to infrared light but opaque to visible wavelengths. This feature allows the device to be used under high ambient light conditions – or anywhere external light sources could interfere with the intended sensing application (visible light immunity).

The **OP555, OP565, OP755** and **OP775** devices have an internal lens in a blue-tinted package. The lensing effect of this package allows an acceptance half-angle of 28° when measured from the optical axis to the half-power point.

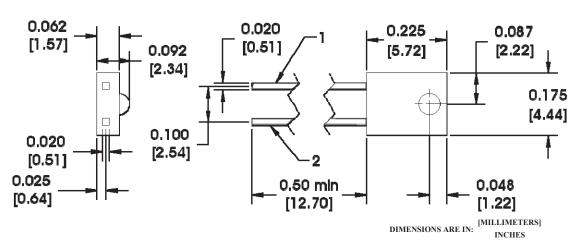
These devices are 100% production tested using infrared light for close correlation with OPTEK's GaAs and GaAIAs emitters.


All of these sensors are mechanically and spectrally matched to the **OP140**, **OP142**, **OP145**, **OP240** and **OP245** series of infrared emitting diodes.

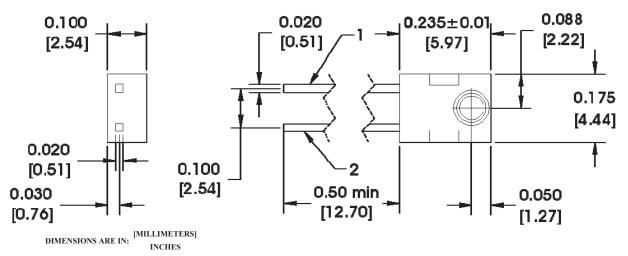
<u>Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.</u> For custom versions please contact your OPTEK representative.

Applications:

- Applications requiring wide receiving angle
- Applications requiring PCBoard mounting
- Space-limited applications
- Optical switches
- Optical interrupt detectors
- Optical encoders
- Non-contact position sensing
- Machine automation



Available Part Numbers										
OP550A	OP552A	OP555A	OP560A	OP565A	OP750A	OP755A	OP770A	OP775A		
OP550B	OP552B	OP555B	OP560B	OP565B	OP750B	OP755B	OP770B	OP775B		
OP550C	OP552C	OP555C	OP560C	OP565C	OP750C	OP755C	OP770C	OP775C		
OP550D	OP552D	OP555D			OP750D	OP755D	OP770D	OP775D		


OP550, OP552, OP555, OP560, OP565, OP750, OP755 Series

OP550, OP552, OP560, OP750, OP770 (A, B, C, D)

OP555, OP565, OP755, OP775 (A, B, C, D)

Pin#	Sensor		
1	Emitter		
2	Collector		

OP555 - CONTAINS POLYSULFONE

To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.

Notes:

- 1. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. A maximum 20 grams force may be applied to the leads when soldering.
- 2. For OP550, OP550, OP555 and OP565, derate linearly 1.33 mW/° C above 25° C. For OP552, derate linearly 1.25 mW/° C above 25° C.
- 3. For all phototransistors in this series, the light source is an unfiltered GaAs LED with a peak emission wavelength of 935 nm. For OP550 and OP555 only, a radiometric intensity level that varies less than 10% over the entire lens surface of the phototransistor being tested applies.
- 4. To calculate typical collector dark current in μA , use the formula $I_{CEO}=10^{\frac{(0.040\,T_A-3.4)}{A}}$, where T_A is ambient temperature in °C.

OP550, OP552, OP555, OP560, OP565, OP750, OP755 Series

Electrical Specifications

Storage Temperature Range	-40° C to +100° C
Operating Temperature Range	
OP550, OP555, OP560, OP565, OP750, OP755	-40° C to +100° (
OP552	-40° C to +85° C
Collector-Emitter Voltage	
OP550, OP552, OP555, OP560, OP750, OP755	30
OP565	15 '
Emitter-Collector Voltage	5 '
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C ^{(:}
Power Dissipation	
OP550, OP552, OP555, OP560, OP565, OP755	100 mW ⁽
OP750	200 mW

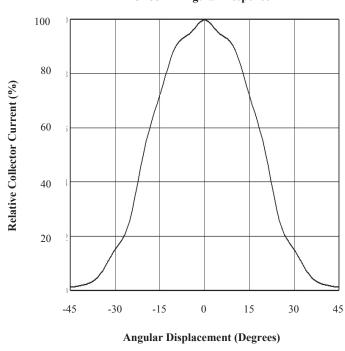
OP550, OP552, OP555, OP560, OP565, OP750, OP755 Series

Electrical Specifications

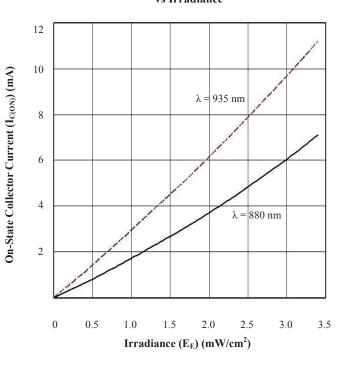
PARAMETER On-State Collector Current OP550A, OP552A, OP555A OP550B, OP552B, OP555B OP550C, OP552C, OP555C OP550D, OP552D, OP555D OP560A, OP565A OP560B, OP565B OP560C, OP565C OP750A OP750B OP750C	2.55 1.30 0.25 0.25 6.6 3.3 1.1		- 4.70 2.40 - - 9.8	UNITS	TEST CONDITIONS $V_{CE} = 5.0 \text{ V, } E_E = 1.0 \text{ mW/cm}^{2(3)}$
OP550A, OP552A, OP555A OP550B, OP552B, OP555B OP550C, OP552C, OP555C OP550D, OP552D, OP555D OP560A, OP565A OP560B, OP565B OP560C, OP565C OP750A OP750B	1.30 0.25 0.25 6.6 3.3 1.1	- - - -	2.40		V _{CE} = 5.0 V, E _E = 1.0 mW/cm ²⁽³⁾
OP560B, OP565B OP560C, OP565C OP750A OP750B	3.3 1.1	-	- 9.8		
OP750B	2.25		-		$V_{CE} = 2.0 \text{ V}, E_E = 0.1 \text{ mW/cm}^{2(3)}$
OP750D	1.50 0.85 0.85	- - -	7.00 4.20 2.80 7.00	mA	V _{CE} = 5.0 V, E _E = 1.0 mW/cm ²⁽³⁾
OP755A OP755B OP755C OP755D	1.20 0.70 0.70	- - -	3.40 2.25 5.50		
OP770A OP770B OP770C OP770D	2.25 1.50 0.85 0.85	- - -	7.00 4.20 2.80 7.00		
OP775A OP775B OP775C OP775D	1.80 1.20 0.70 0.70	- - -	5.50 3.40 2.25 5.50		
Relative I _C Charge with Temperature	-	1.00	-	%/°C	$V_{CE} = 5.0 \text{ V}, E_E = 1.0 \text{ mW/cm}^2, \lambda = 935 \text{ nm}$
Collector-Dark Current	-	-	100	nA	V _{CE} = 10.0 V, E _E = 0 ⁽⁴⁾
Collector-Emitter Breakdown Voltage		-	-	V	$I_C = 100 \mu A, E_E = 0^{(4)}$ $I_C = 1 mA, E_E = 0^{(4)}$
Emitter-Collector Breakdown Voltage	5.0	-	-	V	Ι _Ε = 100 μΑ
Collector-Emitter Saturation Voltage OP550, OP552, OP555, OP750, OP755, OP770, OP775	-	-	0.40	V	$I_C = 100 \mu A, E_E = 1.0 \text{ mW/cm}^{2(3)}$ $I_C = 0.4 \text{ mA}, E_E = 0.1 \text{ mW/cm}^{2(3)}$
	OP755A OP755B OP755C OP755D OP770A OP770B OP770C OP770D OP775A OP775B OP775C OP775D elative I _c Charge with Temperature ollector-Dark Current ollector-Emitter Breakdown Voltage OP550, OP552, OP555, OP750, OP755, OP770, OP775 OP560, OP565 mitter-Collector Breakdown Voltage ollector-Emitter Saturation Voltage	OP755A 1.80 OP755B 1.20 OP755C 0.70 OP755D 0.70 OP770A 2.25 OP770B 1.50 OP770C 0.85 OP775A 1.80 OP775B 1.20 OP775C 0.70 OP775D 0.70 elative I _c Charge with Temperature - ollector-Dark Current - ollector-Emitter Breakdown Voltage OP550, OP552, OP555, OP750, OP755, OP750, OP755, OP560, OP565 15 mitter-Collector Breakdown Voltage 5.0 ollector-Emitter Saturation Voltage 5.0 ollector-Emitter Saturation Voltage 7 OP550, OP552, OP555, OP750, OP755, OP750, OP755, OP770, OP775 -	OP755A 1.80 - OP755B 1.20 - OP755C 0.70 - OP75D 0.70 - OP770A 2.25 - OP770B 1.50 - OP770C 0.85 - OP77DD 0.85 - OP775A 1.80 - OP775B 1.20 - OP775C 0.70 - OP775D 0.70 - elative I _c Charge with Temperature - 1.00 ollector-Dark Current - - ollector-Emitter Breakdown Voltage - - OP770, OP775 0P560, OP565 15 - mitter-Collector Breakdown Voltage 5.0 - ollector-Emitter Saturation Voltage 5.0 - ollector-Emitter Saturation Voltage - - OP770, OP775 - -	OP755A 1.80 - 5.50 OP755B 1.20 - 3.40 OP755C 0.70 - 2.25 OP755D 0.70 - 5.50 OP770A 2.25 - 7.00 OP770B 1.50 - 4.20 OP770C 0.85 - 2.80 OP77DD 0.85 - 7.00 OP775A 1.80 - 5.50 OP775B 1.20 - 3.40 OP775C 0.70 - 2.25 OP775D 0.70 - 5.50 elative I _c Charge with Temperature - 1.00 - ollector-Dark Current - 1.00 - ollector-Emitter Breakdown Voltage OP550, OP552, OP555, OP750, OP755, OP770, OP775 - 0.40	OP755A 1.80 - 5.50 OP755B 1.20 - 3.40 OP755C 0.70 - 2.25 OP770A 2.25 - 7.00 OP770B 1.50 - 4.20 OP770C 0.85 - 2.80 OP77DD 0.85 - 7.00 OP775A 1.80 - 5.50 OP775B 1.20 - 3.40 OP775C 0.70 - 2.25 OP775D 0.70 - 5.50 elative I _c Charge with Temperature - 1.00 - %/°C ollector-Dark Current - - 100 nA ollector-Emitter Breakdown Voltage - - - V oP770, OP775 0P560, OP552, OP555, OP750, OP755, OP

See page 2 for Notes

OP550, OP552, OP555, OP560, OP565, OP750, OP755 Series



Performance


Switching Test Circuit

OP552 - Angular Response

OP552 - On-State Collector Current vs Irradiance

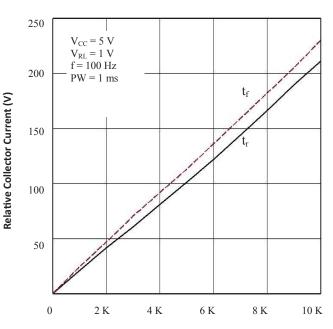
OP550, OP552, OP555, OP560, OP565, OP750, OP755 Series

Performance

OP552 - Output Vs Frequency

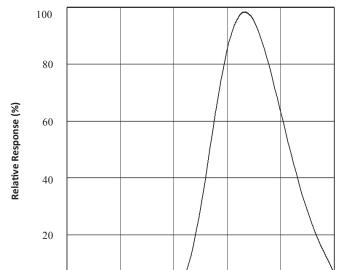
80

R_L = 10 K

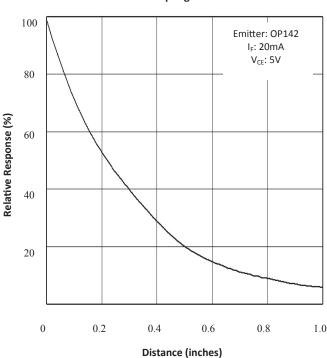

R₁ = 1 K

40

20


1 10 100 1000

OP552 - Rise and Fall Time vs Load Resistance



OP552 - Typical Spectral Response

Frequency (KHz)

Load Resistance (Ohms)
OP552 - Coupling Characteristic

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

800

Wavelength (nm)

700

900

1000

1100

600