: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Photologic ${ }^{\circledR}$ Slotted Optical Switch

 OPB120A, OPB120B, OPB121A, OPB121B,OPB122A, OPB122B, OPB123A, OPB123B

Features:

- Choice of output configuration
- Printed circuit board mounting
- Opaque plastic housing
- Low profile
- $0.080^{\prime \prime}(2.03 \mathrm{~mm})$ wide slot
- $0.275^{\prime \prime}$ (6.99 mm) lead spacing

Description:

The OPB120 through OPB123 devices consist of an infrared emitting diode and a Photologic ${ }^{\circledR}$ sensor (which is a monolithic integrated circuit that incorporates a linear amplifier and a Schmitt Trigger). The OPB120 series have an LED and Photologic ${ }^{\circledR}$ sensor mounted on opposite sides of a $0.080^{\prime \prime}(2.03 \mathrm{~mm})$ wide gap of an opaque housing. The OPB12_A series have a molded $0.040^{\prime \prime}(1.02 \mathrm{~mm})$ wide apertures located over both the emitter and the Photologic ${ }^{\circledR}$ sensor. The OPB12_B seriesseries have a molded $0.040^{\prime \prime}(1.016 \mathrm{~mm})$ wide apertures located over the emitter and $0.010^{\prime \prime}(0.254 \mathrm{~mm})$ over the Photologic ${ }^{\circledR}$ sensor. All devices in this series have the added stability utilizing hysteresis built into the amplification circuitry.

The electrical output can be specified as either buffered Totem-Pole (OPB 120A, OPB120B), buffered Open-Collector (OPB121A, OPB121B), Inverted Totem-Pole (OPB122A, OPB122B), or Inverted Open-Collector (OPB123A, OPB123B).

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing
- Object sensing

Pin \#	Description
1	Cathode
2	Anode
3	V $_{\mathrm{cc}}$
4	Output
5	Ground

Ordering Information		
Part Number	Sensor Photologic ${ }^{\circledR}$	Aperture Emitter/Sensor
OPB120A	Totem-Pole	0.04" / 0.04"
OPB120B		0.04" / 0.01"
OPB121A	Open-Collector	0.04" / 0.04"
OPB121B		0.04" / 0.01"
OPB122A	Inverted TotemPole	0.04" / 0.04"
OPB122B		0.04" / 0.01"
OPB123A	Inverted OpenCollector	0.04" / 0.04"
OPB123B		0.04" / 0.01"

RoHS

Photologic ${ }^{\circledR}$ Slotted Optical Switch

T Electronics

OPB120A, OPB120B, OPB121A, OPB121B, OPB122A, OPB122B, OPB123A, OPB123B

OPB121 Buffered Open-Collector

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB120A, OPB120B, OPB121A, OPB121B,
OPB122A, OPB122B, OPB123A, OPB123B

Electrical Specifications

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Supply Voltage (not to exceed 3 seconds)	10 V
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Soldering Temperature (1/16" $(1.6 \mathrm{~mm})$ from case for 5 seconds with soldering iron) ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Input Infrared Diode	
Input Diode Power Dissipation ${ }^{(2)}$	200 mW
Output Photologic ${ }^{\circledR}$ Power Dissipation ${ }^{(4)}$	300 mW
Total Device Power Dissipation ${ }^{(5)}$	
Output Photologic®	
Voltage at Output Lead (Open Collector Output - OPB121, OPB122, OPB123)	35 V
Forward D.C. Current	40 mA
Reverse D.C. Current	2 V

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(3) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0$.
(4) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(5) Derate linearly $6.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(6) Applies to Totem Pole configurations (OPB120A, OPB120B) only.
(7) All parameters tested using pulse technique.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

OPB120A, OPB120B, OPB121A, OPB121B, OPB122A, OPB122B, OPB123A, OPB123B

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode (see OP240 for additional information)						
V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Output Photologic® Sensor (see OPL560 for additional information)						
$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.75	-	5.25	V	
$\mathrm{I}_{\mathrm{CLL}}$	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{CCH}}$	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
V_{OH}	High Level Output Voltage: Buffered Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	Inverted Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
I_{OH}	High Level Output Voltage: Buffered Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=25 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
	Inverted Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$	Hysteresis	-	2	-	-	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Photologic ${ }^{\circledR}$ Slotted Optical Switch

TT Electronics

OPB120A, OPB120B, OPB121A, OPB121B, OPB122A, OPB122B, OPB123A, OPB123B

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)						
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
los	Short Circuit Output Current: Buffered Totem-Pole Output	-20	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(2)} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
	Inverted Totem-Pole Output	-20	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(2)} \\ & \text { Output = GND } \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise Time, Output Fall Time	-	70	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=0 \text { or } 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=8 \mathrm{TTL} \text { Loads (Totem-Pole) } \\ & \mathrm{R}_{\mathrm{L}}=360 \Omega \text { (Open-Collector) } \end{aligned}$
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay Low-High \& High-Low	-	5	-	$\mu \mathrm{s}$	

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=00$.
(2) Applies to Totem Pole configurations (OPB120A, OPB120B) only.

Photologic ${ }^{\circledR}$ Slotted Optical Switch

T Electronics

OPB120A, OPB120B, OPB121A, OPB121B, OPB122A, OPB122B, OPB123A, OPB123B

Photologic ${ }^{\circledR}$ Slotted Optical Switch

TT Electronics

OPB120A, OPB120B, OPB121A, OPB121B, OPB122A, OPB122B, OPB123A, OPB123B

