: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Slotted Optical Flag Switch OPB680, OPB680-20, OPB690Z

- Phototransistor output
- Mechanical switch replacement
- Enhanced signal to noise ratio
- Printed PCBoard mounting (OPB680, OPB680-20)
- Lever force options(OPB680, OPB680-20)
- 3-pin connector, 0.98" (2.5 mm) Mates with Molex 22-01-1032 and terminal \#08-700069

Description:

Each OPB680, OPB680-20 and OPB690Z optical flag switch consists of an infrared emitting diode in a molded plastic housing. The phototransistor has an enhanced low current roll-off that improves contrast ratio and immunity to background irradiance.

A lever arm actuated flag interrupts the light beam and switches the output between states that can readily drive logic gates. This can be actuated by passing a paper sheet without damaging the paper's edge.

OPB680-20 offers increased lever operating force that prevents false triggering due to incidental contact in door sensing and other heavy-duty applications.

OPB690Z is designed to easily snap mount into a $0.037^{\prime \prime} \pm 0.001^{\prime \prime}(0.940 \mathrm{~mm} \pm 0.025 \mathrm{~mm})$ thick material with a rectangular opening of $0.320^{\prime \prime} \pm 0.003^{\prime \prime} \times 0.472^{\prime \prime}(8.128 \mathrm{~mm} \times 11.989 \mathrm{~mm})$ minimum. Insertion into the punched side of metal is recommended.

Customized lever arms and spring torques can be designed for specific applications for each of the devices.
Custom electrical, wire, cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

Ordering Information				
Part Number	LED Peak Wavelength	Sensor	Flag Travel Degrees Max	Lead Length / Spacing or Connector
OPB680	890 nm	Rbe Transistor	51°	0.100" / 0.275"
OPB680-20				
OPB690Z			70°	Molex 5102

OPB680, OPB680-20

Pin \#	Description	Pin \#	Description
1	Anode	3	Collector
4	Cathode	2	Emitter

[MILLIMETERS]
dIMENSIONS ARE IN: INCHES

Notes:
(1) For OPB680 and OPB680-20, the "on" condition exists when the lever arm is in the rest position (16 ${ }^{\circ}$ from vertical).
(2) For OPB680 and OPB680-20, the "off" condition exists when the lever arm is deflected clockwise $8^{\circ} \pm 3^{\circ}$ from the rest position (16 ${ }^{\circ}$ from vertical). Maximum allowable deflection is 35° from the rest position.

OPB690Z

Pin \#	Description
1	Anode
2	Collector
3	Ground

Notes:
(1) For OPB690Z, the "on" condition exists when the lever arm is deflected clockwise $18^{\circ}+/-3^{\circ}$ from the rest position (20° from vertical).
(2) For OPB690Z, the "off" position exists when the lever arm is in the rest position (20° from vertical).
(3) For OPB690Z, from the rest position to the switch point the lever torque measured at the end of the arm is 1.5 grams maximum.

Slotted Optical Flag Switch
 OPB680, OPB680-20, OPB690Z

Absolute Maximum Ratings $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 sec. with soldering iron] ${ }^{(1)}$	$260^{\circ} \mathrm{C}$
Input Diode	
Forward DC Current	50 mA
Peak Forward Current (1 $\mu \mathrm{s}$ pulse width, 300 pps$)$	3 A
Reverse DC Voltage	3 V
Power Dissipation ${ }^{(2)}$	100 mW
Output Phototransistor	24 V
Collector-Emitter Voltage	10 mA
Emitter Reverse Current	30 mA
Collector DC Current	200 mW
Power Dissipation ${ }^{(3)}$	

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode (see OP245 for additional information)						
V_{F}	Forward Voltage	-	-	1.6	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$I_{\text {R }}$	Reverse Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$
Output Phototransistor (See OP755 for additional information)						
$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	24	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$B V_{\text {ECO }}$	Emitter-Collector Breakdown Voltage	4.0	-	-	V	$\mathrm{l}_{\mathrm{EC}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\text {ceo }}$	Collector-Emitter Dark Current	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
Coupled						
$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	-	-	0.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$I_{\text {C(ON) }}$	On-State Collector Current	600	-	-	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$, unblocked
$\mathrm{I}_{\text {(ON) }}$	On-State Collector Current	-	-	150	nA	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$, blocked
Mechanical						
Fop	Operating Force OPB680, OPB690Z OPB680-20	-		$\begin{aligned} & 1.5 \\ & 20 \end{aligned}$	g	Measured at end of lever
Cycles	Operating Cycles	100 K	-	-	cycles	-

Notes:

(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. Maximum 20 grams force may be applied to leads when soldering (OPB680, OPB680-20).
(2) Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Derate linearly $2.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

