

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High Resolution Slotted Optical Switch

OPB821TX, OPB821TXV

Features:

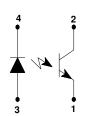
- Non-contact switching
- Low profile to facilitate stacking
- Hermetically sealed components
- 24" (609.60 mm) minimum length wire conforms to MIL-W-16878
- TX and TXV components processed to MIL-PRF-19500

Description:

Each **OPB821TX** and **OP821TXV** device consists of a gallium aluminum arsenide LED and a silicon phototransistor, which are soldered into a printed circuit board and mounted in a high temperature plastic housing on opposite sides of an 0.080" (2.03 mm) wide slot. Lead wires are #24 AWG polytetraflouroethylene (PTFE) insulated, which conforms to MIL-W-16878.

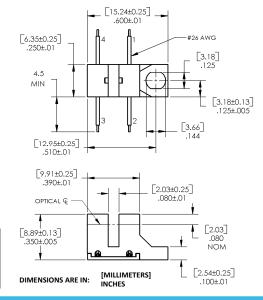
Phototransistor switching takes place when an opaque object passes through the slot. For maximum output signal, neither the LED nor the phototransistor is apertured.

TX and TXV device components are processed to OPTEK's military screening program patterned after MIL-PRF-19500.


Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Contact your local representative or OPTEK for more information.

Applications:


- Non-contact object sensing
- Assembly line automation
- Machine automation
- · Equipment safety
- Machine safety

Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	I _{C(ON)} (mA) Min	I _F (mA) Typ / Max	V _{CE} (Volts) Max	Aperture Emitter/ Sensor	Lead Length / Spacing
OPB821TX	000	Turnistan	0.080"/	0.00	20 / 50	20	0.040"/	24"/26
OPB821TXV	880 nm	0 nm Transistor		0.255"	20 / 50	30	0.040"	AWG wire

Color/Pin#	Description	Color/Pin #	Description
Green-3	Cathode	White-2	Collector
Orange-4	Anode	Blue-1	Emitter

High Resolution Slotted Optical Switch

OPB821TX, OPB821TXV

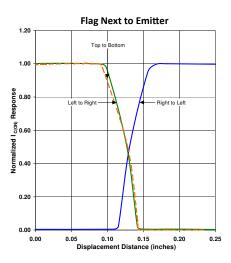
Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unle	ss otherwise noted)
--	---------------------

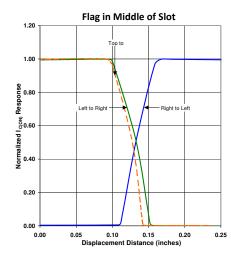
Storage Temperature	-65°C to +150° C
Operating Temperature	-65°C to +125° C
Lead Soldering Temperature (1/16 inch [1.6 mm] from case for 5 seconds with soldering iron) ⁽¹⁾	260° C
Input Diode	
Continuous Forward Current	50 mA
Reverse Voltage	2 V
Power Dissipation ⁽¹⁾	100 mW
Output Phototransistor	
Collector-Emitter Voltage	50 V
Emitter-Collector Voltage	7 V
Power Dissipation ⁽¹⁾	100 mW

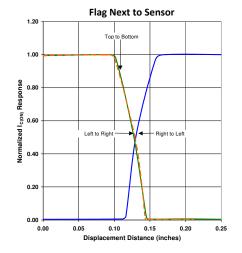
Electrical Characteristics (T_A = 25° C unless otherwise noted)

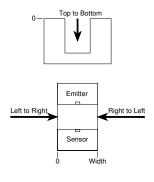
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Input Diode							
V_{F}	Forward Voltage ⁽³⁾	1.00	1.35	1.70	V	I _F = 20 mA	
		1.20	1.55	1.90		I _F = 20 mA, T _A = -55° C	
		0.80	1.20	1.60		I _F = 20 mA, T _A = 100° C	
I _R	Reverse Current		0.10	100	μΑ	V _R = 2 V	
Output Phototransistor							
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	110	-	V	I _C = 1 mA, I _F = 0	
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	7	10	-	V	$I_E = 100 \mu A, I_F = 0$	
1	Collector-Emitter Dark Current	-	0.20	100	nA	$V_{CE} = 10 \text{ V, } I_F = 0$	
I _{C(OFF)}		-	10	100	μΑ	$V_{CE} = 10 \text{ V}, I_F = 0, T_A = 100^{\circ} \text{ C}$	
Coupled							
	On-State Collector Current ⁽³⁾	800	-	-	μΑ	V _{CE} = 10 V, I _F = 20 mA	
I _{C(ON)}		500	1	-		V _{CE} = 10 V, I _F = 20 mA, T _A = -55° C	
			-1	-		V _{CE} = 10 V, I _F = 20 mA, T _A = 100° C	
V _{CE(SAT)}	Collector-Emitter Saturation Voltage OPB820S10, OPB821S10	-	0.20	0.30	V	I _C = 250 μA, I _F = 20 mA	

High Resolution Slotted Optical Switch


OPB821TX, OPB821TXV


Electrical Characteristics (T_A = 25° C unless otherwise noted)


SYMBOL	IBOL PARAMETER		TYP	MAX	UNITS	TEST CONDITIONS
Coupled						
t _r	Output Rise Time	-	12	20		V - 10 V L - 30 mA B - 1000 O
t _f	Output Fall Time	-	12	20	μs	$V_{CC} = 10 \text{ V}, I_F = 20 \text{ mA}, R_L = 1000 \Omega$


Notes:

- (1) Derate linearly 1.00 mW/° C above 25° C.
- (2) Methanol or isopropanol are recommended cleaning agents.
- (3) Measurement is taken during the last 500 µs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause

