: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Dual Channel Encoder

OPB822S, OPB822SD

OPB826S, OPB826SD

Features:

- Non-contact switching
- Single or double apertures for high resolution
- Choice of slot widths
- Choice of side-by-side or over/under dual channels
- Choice of electrical outputs

Description:

Each OPB822 and OPB826 slotted switch consists of two infrared emitting diodes and two NPN silicon phototransistors mounted on opposite sides of a $0.090^{\prime \prime}(2.29 \mathrm{~mm})$ wide slot (OPB822) or a $0.100^{\prime \prime}(2.54 \mathrm{~mm})$ wide slot (OPB826).

OPB822 uses an side-by-side mounting configuration, while OPB826 uses an over/under mounting configuration. OPB822S has $0.01^{\prime \prime}$ by $0.04^{\prime \prime}(0.25 \mathrm{~mm} \times 1.02 \mathrm{~mm}$) apertures in front of both phototransistors while the OPB822SD has the aperture in front of both phototransistors and both emitters. The OPB826S has 0.04 " by 0.04 " ($1.02 \mathrm{~mm} \times 1.02 \mathrm{~mm}$) apertures in front of both phototransistors while the OPB826SD has the aperture in front of both phototransistors and both emitters.

Dual channels enable direction of travel sensing, with the low-cost plastic housing reduces possible interference from ambient light and provides protection from dust and dirt.

Phototransistor switching occurs when an opaque object passes through the device slot.
For information on encoder design, see Application Bulletin 203 at:

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Encoders
- Non-contact object sensing
- Assembly line automation
- Machine automation
- Equipment security
- Machine safety

Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	Aperture Emitter/ Sensor	Lead Length / Spacing
OPB822S	Dual 935 nm	Dual Transistor	$\begin{gathered} 0.09 " ~ / ~ \\ 0.30^{\prime \prime} \end{gathered}$	$\begin{gathered} \hline \text { None / } \\ 0.01 " \end{gathered}$	$\begin{gathered} 0.35 " / \\ 0.30 " \end{gathered}$
OPB822SD				$\begin{gathered} \hline 0.01 " / \\ 0.01 " \end{gathered}$	
OPB826S	$\begin{gathered} \text { Dual } \\ 890 \mathrm{~nm} \end{gathered}$	Dual Transistor	$\begin{gathered} 0.10 " / \\ 0.42^{\prime \prime} \end{gathered}$	NA / 0.04"	$\begin{gathered} 0.20 " / \\ 0.74 " \end{gathered}$
OPB826SD				$\begin{gathered} \hline 0.04 " / \\ 0.04 " \end{gathered}$	

OPB822

Pin \#	Description	Pin \#	Description
8	Cathode-1	1	Collector-1
7	Anode-1	2	Emitter-1
6	Cathode-2	3	Collector-2
5	Anode-2	4	Emitter-2

[MILLIMETERS]
inches
OPB826

Pin \#	Description	Pin \#	Description
8	Cathode-1	1	Collector-1
7	Cathode-2	2	Collector-2
6	Anode-2	3	Emitter-2
5	Anode-1	4	Emitter-1

CONTAINS POLYSULFONE
To avoid stress cracking, we suggest using
ND Industries' Vibra-Tite for thread-locking.
Vibra-Tite evaporates fast without causing structural failure in
OPTEK's molded plastics.

[MILLIMETERS]
INCHES

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soldering Temperature [1/16 inch (1.6mm) from the case for 5 sec. with soldering iron ${ }^{(1)}$	$240^{\circ} \mathrm{C}$

Input Diode

Forward DC Current	
OPB822S, OPB822SD	50 mA
OPB826S, OPB826SD	
Peak Forward Current (1 μ s pulse width, 300 pps$)$	1 A
Reverse DC Voltage	2 V
Power Dissipation ${ }^{(2)}$	100 mW

Output Phototransistor

Collector-Emitter Voltage	
Emitter-Collector Voltage	30 V
Collector DC Current	5 V
Power Dissipation ${ }^{(2)}$	30 mA

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(2) Derate linearly $1.67 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Methanol or isopropanol are recommended as cleaning agents. Plastic housing is soluble in chlorinated hydrocarbons and ketones. Spray and wipe; do not submerge.
(4) Derate linearly $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(5) All parameters tested using pulse techniques.
(6) Feature controlled at body.

Encoder Sequence for OPB826

$$
\begin{aligned}
& 110001100 \text { Channel A } \\
& 10011001 \text { Channel B }
\end{aligned}
$$

For information on encoder design, see Application Bulletin 203 at:
http://www.optekinc.com/pdf/App_Note_203.pdf

OPB826S, OPB826SD

Electrical Characteristics (OPB822, OPB826) ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode (see OP140 for OPB822 or OP266 for OPB826 for additional information)

V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}$

Output Phototransistor (see OP550 for OPB822 or OP506 for OPB826 for additional information)

$\mathrm{V}_{\text {(BR)(CEO) }}$	Collector-Emitter Breakdown Voltage	30	-	-	V	$\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$
$\mathrm{~V}_{\text {(BR)(ECO) }}$	Emitter-Collector Breakdown Voltage	5	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\text {CEO }}$	Collector-Emitter Leakage Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{E}_{\mathrm{E}}=0$

Coupled

$I_{\text {con }}$	On-State Collector Current OPB822S OPB822SD OPB826S OPB826SD	$\begin{aligned} & 250 \\ & 100 \\ & 250 \\ & 100 \end{aligned}$	-		$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {cE(SAT) }}$	Collector-Emitter Saturation Voltage OPB822S OPB822SD OPB826S OPB826SD		- - -	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=125 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=125 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {cx } 1}$	Crosstalk OPB822D, OPB822SD OPB826S OPB826SD		-	$\begin{gathered} 250 \\ 20 \\ 10 \end{gathered}$	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F} 1}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F} 2}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}$

Notes:
(1) All parameters tested using pulse techniques.

