

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

High Resolution Slotted Optical Switch

OPB847TX, OPB847TXV, OPB848TX, OPB848TXV

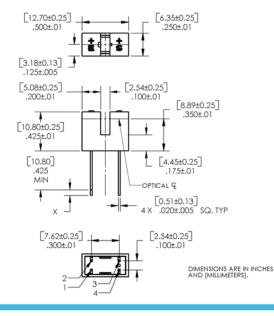
Features:

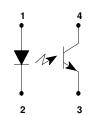
- Non-contact switching
- Apertured for high resolution
- Hermetically sealed components
- TX and TXV devices processed to MIL-PRF-19500

Description:

The **OPB847TX**, **OPB848TX** and **OPB848TXV** each consist of a gallium aluminum arsenide LED and a silicon phototransistor, which is soldered into a printed PCBoard and then mounted in a high-temperature plastic housing on opposite sides of a 0.10 inch (2.54 mm) wide slot. Both device types have a 0.025 inch by 0.060 inch (0.635 mm by 1.524 mm) aperture in front of the phototransistor for high resolution positioning sensing. Phototransistor switching takes place when an opaque object passes through the slot.

TX and TXV device components are processed to OPTEK's military screening program patterned after MIL-PRF-19500.


Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.


Contact your local representative or OPTEK for more information.

Applications:

- · Non-contact object sensing
- Assembly line automation
- Machine automation
- · Equipment safety
- Machine safety

Part Number	LED Peak Wavelength	Sensor	Slot Width / Depth	Aperture Emitter/Sensor	Lead Length / Spacing
OPB847TX	200 nm	Transistar	0.100" / 0.250"	0.025" / 0.025"	0.425" / 0.300"
OPB847TXV	890 nm	Transistor	0.100 / 0.250	0.025 / 0.025	0.425 / 0.300
OPB848TX	890 nm	Transistor	0.100" / 0.250"	0.025" / 0.025"	0.425" / 0.300"
OPB848TXV	890 11111	Transistor	0.100 / 0.250	0.025 / 0.025	0.425 / 0.300

Pin #	Description
1	Anode
2	Cathode
3	Emitter
4	Collector

High Resolution Slotted Optical Switch

OPB847TX, OPB847TXV, OPB848TX, OPB848TXV

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Temperature Range	-65° C to +125° C
Storage Temperature Range	-65° C to +150° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from the case for 5 seconds with soldering iron]	260° C

Input Diode

Forward DC Current	50 mA
Reverse Voltage	2 V
Power Dissipation ⁽²⁾	100 mW

Output Phototransistor

Collector-Emitter Voltage	50 V
Emitter-Collector Voltage	7 V
Power Dissipation ⁽²⁾	100 mW

Electrical Characteristics (T_A = 25° C unless otherwise noted)

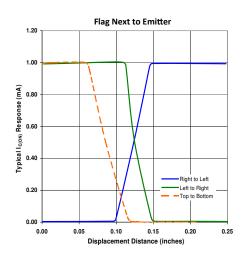
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS	
Input Diode							
	Forward Voltage ⁽⁴⁾	1.00	1.35	1.70	V	I _F = 20 mA	
V_{F}		1.20	1.55	1.90		I _F = 20 mA, T _A = -55° C	
		0.80	1.20	1.60		I _F = 20 mA, T _A = 100° C	
I _R	Reverse Current	-	0.10	100	μΑ	V _R = 2 V	
Output Phototransistor							

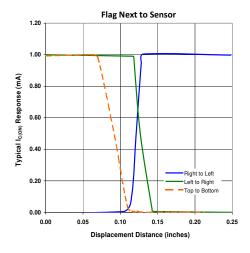
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	50	110	-	V	I _C = 1 mA, I _F = 0
$V_{(BR)ECO}$	Emitter-Collector Breakdown Voltage	7	10	-	٧	$I_E = 100 \mu A, I_F = 0$
I _{C(OFF)} Collector-Emitter	Collector Emitter Dark Current	-	0.20	100	nA	$V_{CE} = 10 \text{ V, } I_F = 0$
	Collector-Emitter Dark Current	-	10	100	μΑ	V _{CE} = 10 V, I _F = 0, T _A = 100° C

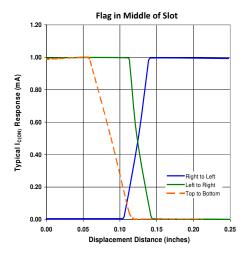
Notes

- (1) Duration can be extended to 10 seconds maximum when flow soldering.
- (2) Derate linearly 1.00 mW/° C above 25° C.
- (3) Methanol and isopropanol are recommended as cleaning agents.
- (4) Measurement is taken during the last 500 μs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

High Resolution Slotted Optical Switch


OPB847TX, OPB847TXV, OPB848TX, OPB848TXV


Electrical Characteristics (T_A = 25°C unless otherwise noted)


SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Combined						
I _{C(ON)}	On-State Collector Current (1) OPB847 (TX, TXV) OPB847 (TX, TXV) OPB847 (TX, TXV) OPB848 (TX, TXV) OPB848 (TX, TXV) OPB848 (TX, TXV)	4.00 2.50 2.50 1.00 0.60 0.60			mA	$\begin{split} &V_{CE} = 10 \text{ V, I}_F = 20 \text{ mA,} \\ &V_{CE} = 10 \text{ V, I}_F = 20 \text{ mA, T}_A = -55^{\circ} \text{ C} \\ &V_{CE} = 10 \text{ V, I}_F = 20 \text{ mA, T}_A = 100^{\circ} \text{ C} \\ &V_{CE} = 10 \text{ V, I}_F = 20 \text{ mA,} \\ &V_{CE} = 10 \text{ V, I}_F = 20 \text{ mA, T}_A = -55^{\circ} \text{ C} \\ &V_{CE} = 10 \text{ V, I}_F = 20 \text{ mA, T}_A = 100^{\circ} \text{ C} \end{split}$
V _{CE(SAT)}	Collector-Emitter Saturation Voltage OPB847 (TX, TXV) OPB848 (TX, TXV)	1 1	0.20 0.20	0.30 0.30	V	I _C = 2 mA, I _F = 20 mA I _C = 500 μA, I _F = 20 mA
t _r	Output Rise Time OPB847 (TX, TXV) OPB848 (TX, TXV)		12 8	20 15		V = 10 V I = 20 mA B = 10000
t _f	Output Fall Time OPB847 (TX, TXV) OPB848 (TX, TXV)		12 8	20 15	μs	$V_{CC} = 10 \text{ V, I}_F = 20 \text{ mA, R}_L = 1000\Omega$

Notes:

(1) Measurement is taken during the last 500 μs of a single 1.0 ms test pulse. Heating due to increased pulse rate or pulse width can cause change in measurement results.

