: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Slotted Optical Flag Switch OPB850A, OPB850-1Z

Description:

Each OPB850A switch has a NPN phototransistor coupled with a 940 nm gallium arsenide infrared emitting diode in a molded plastic housing. Each OPB850-1Z has a Rbe phototransistor coupled with an 880 nm gallium arsenide infrared emitting diode in a molded plastic housing. An actuated lever arm flag interrupts the light beam, which switches the transistor output between states that can readily drive logic gates.

These devices are designed to replace conventional mechanical limit switches where long life and reliability are critical. The switches are designed to easily snap mount into a 0.036 inch $(0.914 \mathrm{~mm}) 20$ gage thick material with a rectangular opening of 0.315 " $\times 0.472$ " ($8.0 \mathrm{~mm} \times 12.0 \mathrm{~mm}$).

Minor differences exist in the package between the OPB850A and OPB850-1Z (see drawings below). The cable exits the package in different locations.

Custom electrical, wire and cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Non-contact interruptive object sensing
- Assembly line automation
- Machine automation
- Equipment security
- Machine safety

OPB850A, OPB850-1Z	
Pin \# / Color	Description
1-Black	Emitter
2-Red	Anode
3-Brown	Collector
4-Orange	Cathode

Ordering Information		
Part Number	Wavelength	Description
OPB850A	940 nm	Slotted Optical Flag Switch $18^{\prime \prime}(457 \mathrm{~mm})$ wires
OPB850-1Z	880 nm	Slotted Optical Flag Switch $18^{\prime \prime}(457 \mathrm{~mm})$ wires

RoHS

Absolute Maximum Ratings $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)	
Operating Temperature Range	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Soldering Temperature $[1 / 16$ inch $(1.6 \mathrm{~mm})$ from the case for 5 sec. with soldering iron]	$260^{\circ} \mathrm{C}$
Input Diode	
Reverse Voltage	
Continuous Forward Current	5 V
Peak Forward Current (10 $\mu \mathrm{s}$ pulse width, 300 pps$)$	1 mA
Power Dissipation	75 mW
Output Phototransistor	24 V
Collector-Emitter Voltage	5 V
Emitter-Collector Voltage	20 mA
Collector DC Current	100 mW
Power Dissipation	

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage	-	1.2	1.6	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$
Output Phototransistor (OPB850A)						
$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	30	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0$
$\mathrm{V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	5	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0$
$\mathrm{I}_{\text {ceo }}$	Collector-Emitter Dark Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=0$

Coupled (OPB850A)

$\mathrm{V}_{\mathrm{CE}(\text { SAT })}$	Collector-Emitter Saturation Voltage ${ }^{(1)}$	-	-	0.4	V	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	On-State Collector Current ${ }^{(1)}$	0.5	2	-	mA	$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{C}(\text { OFF })}$	Off-State Collector Current $^{(2)}$	-	-	10	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

Output Phototransistor (OPB850-1Z)

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	24	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0$
$\mathrm{V}_{\text {(BR)ECO }}$	Emitter-Collector Breakdown Voltage	0.4	-	-	V	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{~A}, \mathrm{E}_{\mathrm{E}}=0$
$\mathrm{I}_{\text {ceo }}$	Collector-Emitter Dark Current	-	-	100	nA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{E}_{\mathrm{E}}=0$
Coupled (OPB850-1Z)						
$\mathrm{V}_{\text {CEISAT }}$	Collector-Emitter Saturation Voltage ${ }^{(1)}$	-	-	0.40	V	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$I_{\text {C(ON })}$	On-State Collector Current ${ }^{(1)}$	0.5	2	-	mA	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
$I_{\text {C(OFF) }}$	Off-State Collector Current ${ }^{(2)}$	-	-	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$

Notes:
(1) $\mathrm{ON}\left(\mathrm{I}_{\text {C(ON) }}\right)$ electrical condition corresponds to the switch point at about 41° angular displacement of the arm.
(2) OFF ($\left.\mathrm{I}_{\text {c(OFF) }}\right)$ electrical condition corresponds to the mechanical arm position at rest.
(3) From the rest position to the switch point, lever torque measured at the end of the arm is 1.5 grams maximum.
(4) Wires are 26 AWG, UL rated.

