: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Photologic ${ }^{\circledR}$ Slotted Optical Switch "Wide Gap" Series

Description:

The OPB900- OPB913 series of Photologic ${ }^{\circledR}$ Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ wide slot, a user can specify the type and polarity of the TTL output and the type of shell material.

Electrical output can be specified as either TTL Totem Pole (buffered) or TTL Open Collector, either of which can be supplied with an inverted output polarity.

All versions have the added stability of hysteresis built into the amplification circuitry.

	Part Number Guide - OPB900 Series (L, W)
- Mechanical switch replacement - Speed indication (tachometer) - Mechanical limit indication - Edge sensing - Object sensing	

Totem-Pole-Output

Inverted Totem-Pole

Open-Collector-Output

Inverted Open Collector

Photologic ${ }^{\circledR}$ Slotted Optical Switch "Wide Gap" Series

Electrical Specifications

Color-Pin \#	Description	Color-Pin \#						
Description								
	Anode	Black-2	Cathode	White-3	$V_{c c}$	Blue-4	Output	Green-5
Ground								

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+70^{\circ}$ Unless otherwise noted)

Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Lead Soldering Temperature $\left(1 / 16^{\prime \prime}(1.6 \mathrm{~mm}) \text { from case for } 5 \text { seconds with soldering iron }\right)^{(1)}$	$260^{\circ} \mathrm{C}$

Input Infrared LED

DC Forward Diode (LED) Current	40 mA
DC Reverse Diode (LED) Voltage	2 V
Input Diode Power Dissipation ${ }^{(1)}$	100 mW

Output Photologic ${ }^{\text {® }}$

Supply Voltage, V_{cc} (not to exceed 3 seconds)	10 V
Voltage at Output Lead (Open Collector Output version)	35 V
Output Photologic $^{\circledR}$ Power Dissipation ${ }^{(2)}$	200 mW
Total Device Power Dissipation $^{(3)}$	300 mW

Notes:
(1) Derate linearly $2.22 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(2) Derate linearly $4.44 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(3) Derate linearly $6.66 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$
(4) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
(5) Methanol or isopropanol are recommended as cleaning agents. The plastic housing is soluble in chlorinated hydrocarbons and keytones.

Photologic ${ }^{\circledR}$ Slotted Optical Switch "Wide Gap" Series

\uparrow_{\top} Electronics

OPB900 through OPB913 Series (L, W_Z)

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+70^{\circ}$ Unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode (See OPB240 for more information - for reference only)

V_{F}	Forward Voltage	-	-	1.7	V	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Output Photologic ${ }^{\circledR}$ Sensor (See OPB560 for more information - for reference only)

$\mathrm{V}_{\text {cc }}$	Operating D.C. Supply Voltage	4.75	-	5.25	v	
$\mathrm{I}_{\text {ccL }}$	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-		15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(1)}$
$\mathrm{I}_{\text {ch }}$	High Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	15	mA	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
VoL	Low Level Supply Current: Buffered Totem-Pole Output Buffered Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\text {CC }}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output Inverted Open-Collector Output	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=12.8 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(1)}$
$\mathrm{V}_{\text {OH }}$	High Level Output Voltage: Buffered Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}^{(1)}$
	Inverted Totem-Pole Output	2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-800 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}^{(1)}$
$\mathrm{IOH}^{\text {O }}$	High Level Output Current: Buffered Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
	Inverted Open-Collector Output	-	-	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{~V}_{\text {OH }}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+)$	LED Positive-Going Threshold Current	-	-	20	mA	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{F}}(+) / \mathrm{I}_{\mathrm{F}}(-)$	Hysteresis	-	2	-	-	$\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}$
los	Short Circuit Output Current: Buffered Totem-Pole Output	-30	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
	Inverted Totem-Pole Output	-30	-	-100	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \text { Output }=\mathrm{GND} \end{aligned}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Output Rise Time, Output Fall Time	-	70	-	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=0 \text { or } 20 \mathrm{~mA} \\ & \mathrm{R}_{\mathrm{L}}=8 \mathrm{TTL} \text { Loads (Totem-Pole) } \\ & \mathrm{R}_{\mathrm{L}}=360 \Omega \text { (Open-Collector) } \end{aligned}$
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Low-High and High-Low	-	5	-	$\mu \mathrm{s}$	

Notes:
(1) Normal application would be with light source blocked, simulated by $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$.

Photologic ${ }^{\circledR}$ Slotted Optical Switch "Wide Gap" Series

\top_{\top} Electronics

 OPB900 through OPB913 Series (L, W_Z)

