

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

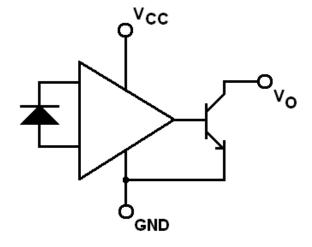
OPF520 Series

Features:

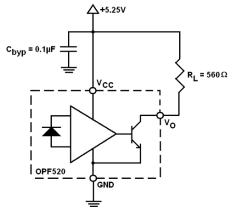
- Low Cost plastic cap package
- Designed to self align in the bore of standard fiber optic receptacles
- Press fit simplifies installation
- Optimized for fiber optic applications using 50 to 200 micron fiber

Description:

The OPF520 series fiber optic receiver is a high performance device packaged for data communications links. As such, it is designed to work with fiber core diameters from 50µm to 200µm and over a broad input power range. The construction contains a monolithic photo-IC comprised of a photodiode, biasing network, DC amplifier and an open collector output transistor. The output circuitry makes this device compatible with TTL and CMOS logic.


This receiver is designed to operate from a single 5V supply. It is essential that a bypass capacitor be connected from V_{CC} to GND in order to ensure the best possible operation.

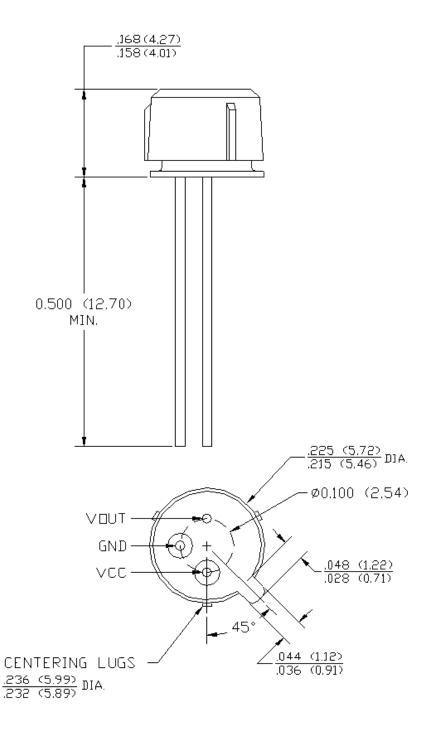
Applications:


- Industrial Ethernet equipment
- Copper-to-fiber media conversion
- Intra-system fiber optic links
- Video surveillance systems

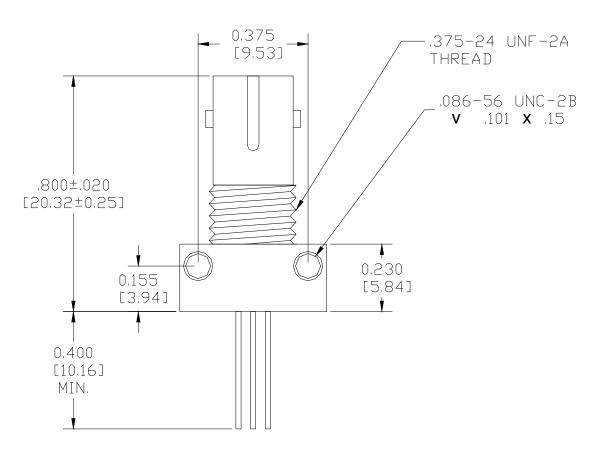
Part Ordering Information

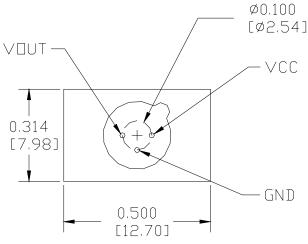
Part Number	Description		
OPF520	Plastic Cap Component		
OPF522	Metal ST Receptacle		

Recommended Test Circuit



General Note


Mechanical Outline—OPF520



OPF520 Series

Mechanical Outline—OPF522

OPF520 Series

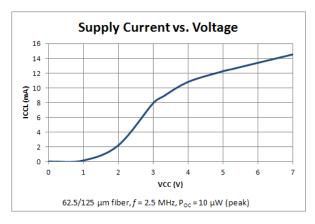
Electrical Specifications

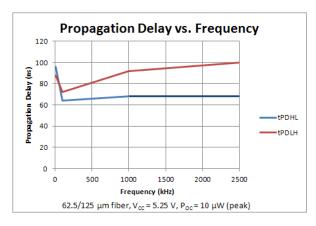
Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)				
Storage Temperature	55° C to +115° C			
Operating Temperature	-40° C to +85° C			
Lead Soldering Temperature (for 10 seconds)	260° C			
Supply Voltage	-0.5 V to +7.0 V			
Output Current	25 mA			
Output Voltage	-0.5 V to +18.0 V			
Open Collector Power Distribution	40mW			
Fan Out (TTL)	5 (1)			

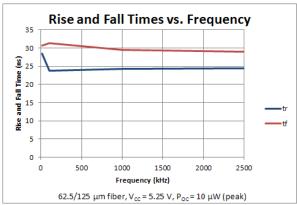
Electric	Electrical Characteristics (T _A = 25° C unless otherwise noted)								
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS			
I _{OH}	High Level Output Current		5	250	μΑ	V _O = 18V, P _{OC} < -40 dBm, See Note 2			
V _{OL}	Low Level Output Voltage		0.2	0.5	V	I _O = 8 mA, P _{OC} > +24 dBm, See Note2			
I _{CCH}	Supply Current, Output High		3.5	6.3	mA	V _{CC} = 5.25 V, P _{OC} < -40 dBm, See Note 2			
I _{CCL}	Supply Current, Output Low		6.9	10	mA	V _{CC} = 5.25 V, P _{OC} < -24 dBm, See Note 2			
D	Peak Input Power Level, Output High			-40	dBm	λp = 850 nm			
P _{OC(H)}	(Guaranteed Output High)			0.1	μW				
P _{OC(L)}		-25.4		-9.2	dBm	λp = 850 nm, I _O = 8 mA			
	Peak Input Power Level, Output Low	2.9		120	μW				
	(Guaranteed Output Low)	-24		-10	dBm	λp = 850 nm, I _O = 8 mA			
		4.0		100	μW	-40°C ≤ T _A ≤ +85°C			
t _r , t _f	Rise, Fall Time		30		ns				
t _{PDHL}	Propagation Delay, Output High to Low		65		ns				
t _{PDLH}	Propagation Delay, Output Low to High		100		ns	P _{oc} = 20 dBm (peak), f = 2.5 MHz, See Note 3			
PWD	Pulse Width Distortion		±30		%				

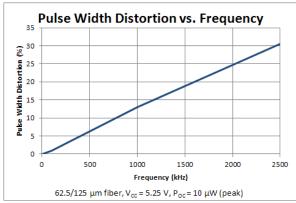
Notes:

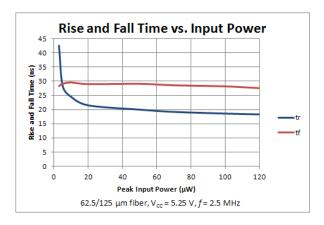
- 1. 8mA load (5 x 1.6 mA), $R_L = 560 \Omega$
- 2. Use recommended test circuit below, but connect V_0 to an independent voltage source with $R_L = 0$.
- 3. Use recommended test circuit below.

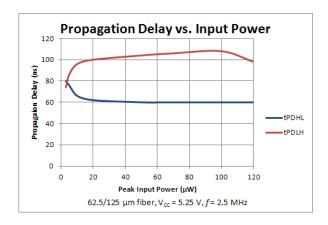

OPF520 Series

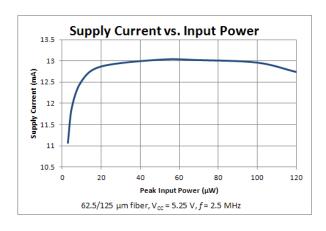


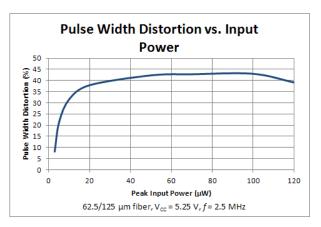

Performance


Switching Characteristics


(See Recommended Test Circuit)

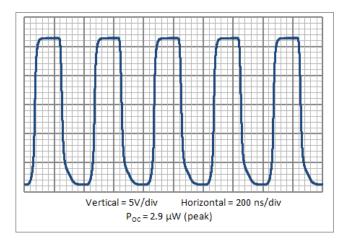


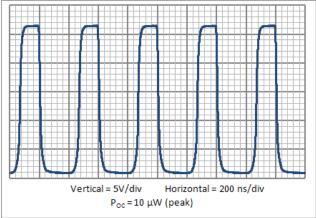


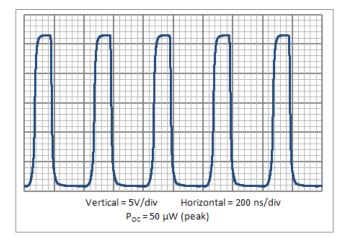

OPF520 Series

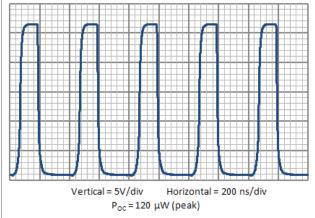
Performance

Switching Characteristics (continued)

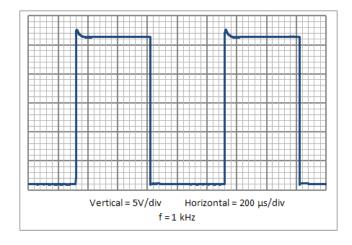

OPF520 Series

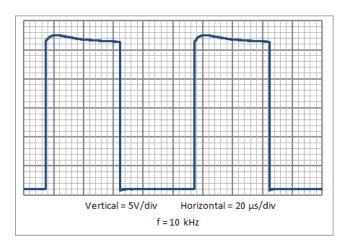


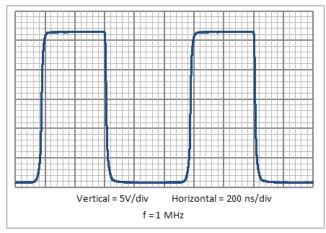

Performance

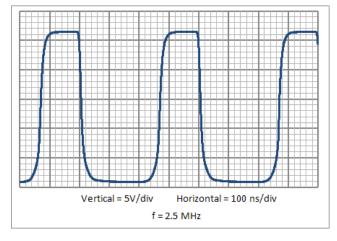

Typical Waveforms for Various Input Powers

(62.5/125 μ m fiber, V_{CC} = 5.25 V, f = 2.5 MHz) (See Recommended Test Circuit)

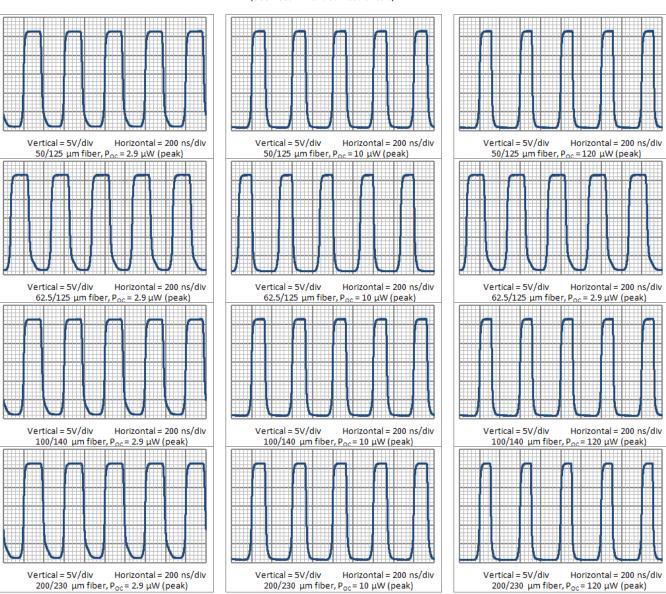

OPF520 Series




Performance


Typical Waveforms for Various Frequencies

(62.5/125 μ m fiber, V_{CC} = 5.25 V, P_{OC} = 10 μ W (peak) (See Recommended Test Circuit)


OPF520 Series

Performance

Typical Waveforms for Various Fiber Cables and Input Powers

 $(V_{CC} = 5.25 \text{ V}, f = 2.5 \text{ MHz})$ (See Recommended Test Circuit)

