

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Features:

- 2,500 or 5,000 Vrms electrical isolation
- · Choice of a Single and Dual LED
- Choice of Phototransistor or Photologic[®] Sensor
- Low-cost plastic Dual-In-Line (DIP) package

Agency Approvals:

UL Certification No: E58730VDE NO: 40026713, 40026624

Description:

The OPIA800 through OPID804 optocouplers are designed for applications that utilize a digital output (Phototlogic®) in a dual-in-line package. Isolation voltage from 2,500 to 5,000 Volts RMS product are designed for some of the most stringent power system isolation requirements.

Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog or digital signals may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 volts RMS. A variety of LED and photosensor configurations are available depending on the system requirements

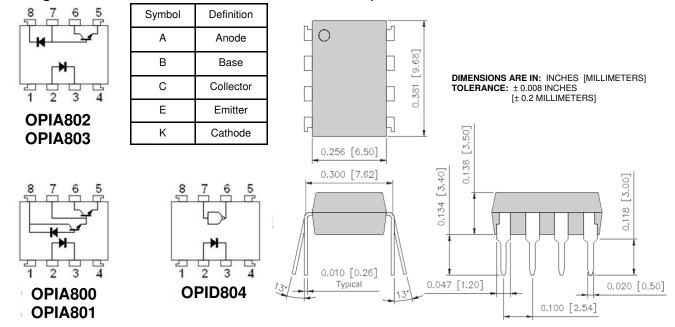
The ratio Current Transfer Ratio (CTR) is determined using the output current and input current for analog photosensors. CTR ratios can range from as low as 5 to over 9,000 depending on the device.

$$CTR = \frac{Photosenso \, r - Current}{LED - Current} = \frac{20mA}{10mA} * 100 = 200$$

All DIP product is shipped in a shipping tube with "TU" identified on the end of the part number. Example: OPIA800DTU is a 8-Pin DIP shipped in a tube (TU).

Applications:

- High voltage isolation
- PCBoard power system isolation
- Industrial equipment power isolation
- Medical equipment power isolation
- Office equipment


Moisture

	Analog Output Devices Ordering Information							
Part Number	Isolation Voltage Max. (Vrms)	CTR Min/Typ/Max	Typ. Tplh / Tphi (ns) [R _L = ohms]	Package	Configuration			
OPIA800	2,500	300 / 1,600 / -	7 / 2 [2.2 K]	8 Pin DIP	A K—K A B C E (Dar)			
OPIA801	2,500	500 / 1,600 / -	10 / 5 [4.7 K]	8 Pin DIP	A K—K A B C E (Dar)			
OPIA802	2,500	15 / 43 / -	0.3 / 0.3 [1.9 K]	8 Pin DIP	A K—K A C E			
OPIA803	2,500	5 / 43 / -	0.4 / 0.3 [4.1 K]	8 Pin DIP	A K—K A C E			
	Digital	Output Devic	es Ordering In	formation				
Part Number	Isolation Voltage Max. (Vrms)	Typ. Tr / Tf (ns) [R _L = 350 ohms]	Typ. Tplh / Tphi (ns) [R _L = ohms]	Package	Configuration			
OPID804	5,000	30 / 30	45 / 45 [350]	8 Pin DIP	A K—NAND			
			Definition of Terms —Sensor Identification					
LED	A = Anode	K = Cathode						
Consor	10K Logic	10K Inverted Logic	NAND Gate	NAND Gate				
Sensor	K = Cathode	A = Anode	B = Base	C = Collector	E = Emitter			
Packaging	Part Number Suffix	c: D = DIP, TU = Ship	o in Tubes, TR = Ship o	n Tape and Reel	Example: OPID606DTI			

Don't Normals on	Pin #									
Part Number	1	2	3	4	5	6	7	8		
OPIA800		Α	K		E	С	С-В	K-C		
OPIA801		Α	K		E	С	C-B	K-C		
OPIA802		Α	K		E	С	A-B	K		
OPIA803		Α	K		E	С	A-B	K		
OPID804		Α	K		GND	Output	Enable	Vcc		

Package Outline Dimensions and Schematics: Top-View

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature	-55° C to +125° C
Operating Temperature OPIA800 OPIA801 OPIA802 OPIA803 OPID804	-40° C to +115° C 0° C to +125 ° C -55° C to +115° C -55° C to +100° C 0° C to +85° C
Isolation voltage (1 minute) OPID804 OPIA800, OPIA801, OPIA802, OPIA803	5,000 Vrms 2,500 Vrms
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron)	260° C

Input Diode

Continuous Forward Current OPIA802, OPIA803, OPID804 OPIA800 OPIA801	25 mA 20 mA
Peak Forward current (1 μs pulse width, 300 pps) OPIA800, OPIA801, OPIA802, OPIA803 OPID804	1 A 40 mA
Reverse Voltage OPIA800, OPIA801, OPIA802, OPIA803, OPID804	5 V
Power Dissipation OPIA802, OPIA803, OPID804 OPIA800, OPIA801	45 mW 35 mW

Absolute Maximum Ratings ($T_A = 0^{\circ} C$ to $70^{\circ} C$ unless otherwise specified)

Output IC

Vcc—Collector-Emitter Voltage OPIA800 OPIA801 OPIA802, OPIA803	-0.5 V to +7 V -0.5 V to +18 V -0.5 V to +15 V
Collector Current OPIA802, OPIA803 OPIA800, OPIA801	8 mA 60 mA
Power Dissipation OPIA800, OPIA801, OPIA802, OPIA803	100 mW

Output NAND Gate—OPID804

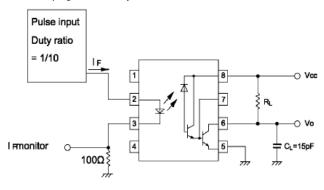
Vcc—Supply voltage	7 V
Enable voltage	5.5 V
High Level Output voltage	7 V
Low Level Output current	50 mA
Output Collector Power Dissipation	85 mW

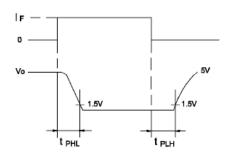
Electrical Characteristics: OPIA800

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
					IVIAA.	
*6 Current transfer ratio	CTR	IF=1.6mA Vo=0.4V,Vcc=4.5V	300	1600	-	%
Logic (0) output volage	Vol	IF=1.6mA Io=4.8mA,Vcc=4.5V	-	0.1	0.4	V
Logic (1) output current	Іон	IF=0,Vo=Vcc=7V	-	0.1	250	uA
Logic (0) supply current	ICCL	IF=1.6mA,Vo=open,Vcc=5V	-	0.5	-	mΑ
Logic (1) supply current	Іссн	IF=0,Vo=open,Vcc=5V	-	10	-	nΑ
Input forward voltage	VF	Ta=25°C,IF=1.6mA	-	1.5	1.7	V
Input forward voltage temperature coefficient	△VF/△ Ta	IF=1.6mA	-	-1.9	-	mV/°C
Input reverse voltage	BVR	Ta=25°C,IR=10uA	5.0	•	-	V
Input capacitance	CIN	VF=0,f=1MHz	-	60	-	рF
*7 Leak current(input-output)	II-O	Ta=25°∁,45% RH Vi₋o=3kVDC,t=5s	-	-	1.0	uA
*7 Isolation resistance(input-output)	RI-O	V _{I-O} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance(input-output)	CI-O	f=1MHz	-	0.6	-	рF

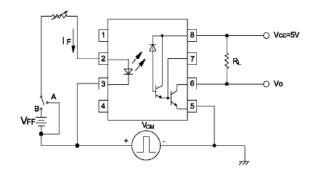
^{*6} Current transfer ratio is a ratio of input current and output current expressed in %.

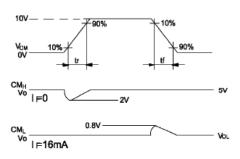
^{*7} Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)




Switching Characteristics: OPIA800

Parameter	Symbol	Conditions	MIN.	TVD	MAX.	Unit
raiametei	Symbol	Conditions	IVIIIN.	ITF.	IVIAA.	Offic
*8 Propagation delay time Output (1)>(0)	t PHL	RL=2.2k Ω ,IF=1.6mA	1	2	10	uS
*8 Propagation delay time Output (0)>(1)	t PLH	RL=2.2kΩ,IF=1.6mA	-	7	35	uS
*9 Instantaneous common *10 mode rejection voltage "Output (1)"	СМн	IF=0,VcM=10Vp-p,RL=2.2kΩ	-	500	-	V/uS
*9 Instantaneous common *10 mode rejection voltage "Output (0)"	CML	IF=1.6mA,Vcм=10Vp-p,RL=2.2kΩ	-	-500	-	V/uS


^{*9} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).


*8 Test Circuit Propagation Delay Time

*10 Test Circuit for Instantaneous Common Mode Rejection Voltage

^{*10} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).

OPIA800

Characteristic Curves

Fig.1 LED Forward Current vs. Forward Voltage

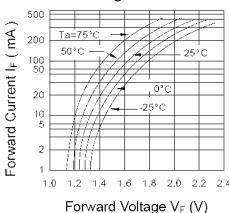


Fig.3 Response and Fall Time vs. Load Resistance

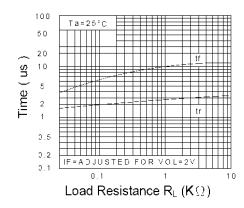


Fig.5 Current Transter Ratio vs. Base-Emitter Resistance



Fig.2 LED Forward Current vs.

Ambient Temperature

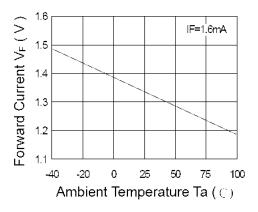
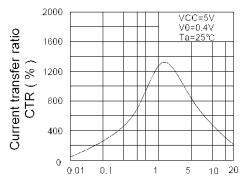
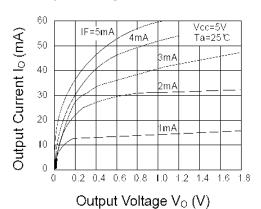
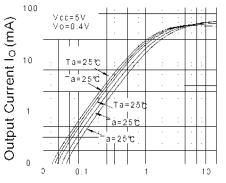




Fig.4 Current Transfer Ratio vs. Forward Current

Forward current I_F (mA)

Fig.6 Output Current vs. Output Voltage



OPIA800

Characteristic Curves

Fig.7 Output Current vs.
Input Diode Forward Current

Input Diode Forward Current IF(mA)

Fig.8 Logic Low Supply Current vs. Input Diode Forward Current

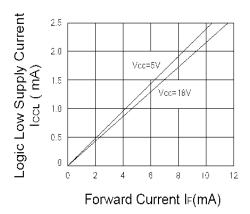


Fig.9 Propagation Delay vs.
Input Diode Forward Current

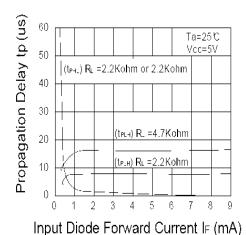
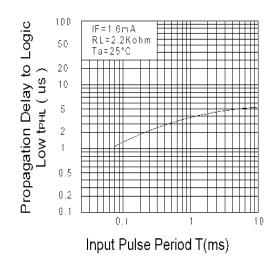



Fig.10 Propagation Delay to Logic Low vs. Pulse Period

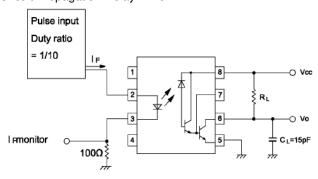
Electrical Characteristics: OPIA801

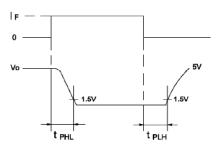
 $(T_A = 25^{\circ}C)$

Parameter Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*6 Current transfer ratio	CTR(1)	I _F =0.5mA, V _O =0.4V, V _{CC} =4.5V	400	1800	-	%
6 Guiterit transier fatto	CTR(2)	I _F =1.6mA, V _O =0.4V, V _{CC} =4.5V	500	1600	-	%
	V _{OL} (1)	I _F =6.4mA, I _O =1.6mA, V _{CC} =4.5V	-	0.1	0.4	V
Logic (0) output voltage	V _{OL} (2)	I _F =5mA, I _O =15mA, V _{CC} =4.5V	-	0.1	0.4	V
	V _{OL} (3)	I _F =12mA, I _O =24mA, V _{CC} =4.5V	-	0.1	0.4	V
Logic (1) output current	I _{OH}	I _F =0, V _O =V _{CC} =18V	-	0.05	100	uA
Logic (0) supply current	I _{CCL}	I _F =1.6mA, V _O =open, V _{CC} =5V	-	0.5	-	mA
Logic (1) supply current	I _{CCH}	I _F =0, V _F =open, V _{CC} =5V	-	10	-	nA
Input forward voltage	V _F	Ta=25°ℂ , I _F =1.6mA	-	1.5	1.7	V
Input forward voltage temperature coefficient	∆V _F /∆Ta	I _F =1.6mA	-	-1.9	-	mV/°C
Input reverse voltage	BV_R	Ta=25℃, I _R =10uA	5.0	-	-	V
Input capacitance	C _{IN}	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25°C , 45%RH V _{I-0} =3KVDC , t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-O}	V _{I-O} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF

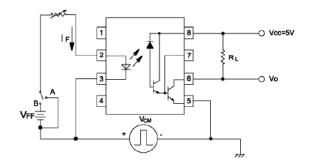
^{*6} Current transfer ratio is a ratio of input current and output current expressed in %.

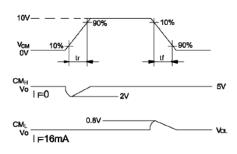
^{*7} Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)




Switching Characteristics: OPIA801

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time Output (1) → (0)	t _{PHL} -	R _L =4.7KΩ, I _F =0.5mA	-	5	25	uS
		R_L =270 Ω , I_F =12mA	-	0.3	1	uS
Propagation delay time Output (0) → (1)	t	R_L =4.7K Ω , I_F =0.5mA	-	10	60	uS
	t _{PLH}	R_L =270 Ω , I_F =12mA	-	1.5	7	uS
Instantaneous common *9 mode rejection voltage " Output (1) "	CM _H	I_F =0, V_{CM} =10 V_{P-P} , R_L =2.2 $K\Omega$	-	500	-	V/uS
Instantaneous common *9 mode rejection voltage *10 " Output (0) "	CML	I_F =1.6mA, V_{CM} =10 V_{P-P} , R_L =2.2 $K\Omega$	-	-500	-	V/uS


^{*9} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).


*8 Test Circuit Propagation Delay Time

*10 Test Circuit for Instantaneous Common Mode Rejection Voltage

^{*10} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).

Electrical Characteristics: OPIA802

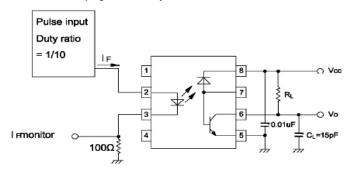
 $(T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$

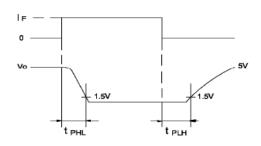
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*5 Current transfer ratio	CTR(1)	Ta=25°ℂ , I _F =16mA V _O =0.4V, V _{CC} =4.5V	19	40	-	%
5 Garrett transfer ratio	CTR(2)	I_F =16mA V_O =0.5V, V_{CC} =4.5V	15	43	-	%
Logic (0) output voltage	V _{OL}	*6 V_{CC} =4.5 V , I_F =16 mA	-	0.1	0.4	V
	I _{OH} (1)	Ta=25°∁, I _F =0 V _O =V _{CC} =5.5V	-	3.0	500	nA
Logic (1) output current	I _{OH} (2)	Ta=25°ℂ, I _F =0 V _O =V _{CC} =15V	-	0.01	1.0	uA
	I _{OH} (3)	$V_{CC}=V_{O}=15V$, $I_{F}=0$	-	-	50	uA
Logic (0) supply current	I _{CCL}	I _F =16mA V _O =open, V _{CC} =15V	-	200	-	uA
Logic (1) supply current	I _{CCH} (1)	Ta=25°C, I ₀ =0 V _F =open, V _{CC} =15V	-	0.02	1.0	uA
Logic (1) supply current	I _{CCH} (2)	I _O =0 V _O =open, V _{CC} =15V	- 0.1 0.4 - 3.0 500 - 0.01 1.0 50 - 200 0.02 1.0 - 1.7 1.951.9 - 5.0 60 1.0 - 10 ¹² 0.6 -	uA		
Input forward voltage	V_F	Ta=25°ℂ, I _F =16mA	-	1.7	1.95	V
Input forward voltage temperature coefficient	$\triangle V_F / \triangle Ta$	I _F =16mA	-	-1.9	-	mV/°C
Input reverse voltage	BV _R	Ta=25°C, I _R =10uA	5.0	-	-	V
Input capacitance	C _{IN}	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25°ℂ , 45%RH V _{I-0} =3KVDC, t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-O}	V _{I-O} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF
Transistor current amplification factor	h _{FE}	V _O =5V, I _O =3mA	-	70		

^{*5} Current transfer ratio is a ratio of input current and output current expressed in %.

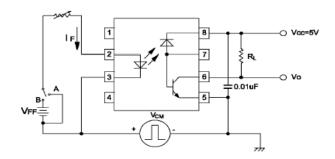
^{*6} lo = 2.4mA

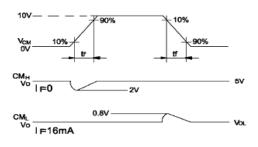
^{*7} Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)


Switching Characteristics: OPIA802


 $(T_A = 25^{\circ}C, V_{CC}=5V, I_F=16mA)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time *9 Output (1) → (0)	t _{PHL}	R_L =1.9K Ω	-	0.3	0.8	uS
*8 Propagation delay time *9 Output (0) → (1)	t _{PLH}	R _L =1.9KΩ	-	0.3	0.8	uS
Instantaneous common *10 mode rejection voltage " Output (1) "	СМн	I _F =0, V _{CM} =10V _{P-P}	-	1000	-	V/uS
Instantaneous common *10 mode rejection voltage " Output (0) "	CML	I _F =16mA, V _{CM} =10V _{P-P}	-	-1000	-	V/uS
*12 Bandwidth	BW	R _L =100 Ω	-	2.0		MHz


^{*8} $R_L = 1.9k$ ohms is equivalent to on LSTTL and 5.6k ohm pull-up resistor.


*9 Test Circuit Propagation Delay Time

*11 Test Circuit for Instantaneous Common Mode Rejection Voltage

^{*9} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).

^{*10} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).

^{*11} Bandwidth represents a point where AC input goes down by 3dB.

Electrical Characteristics: OPIA803

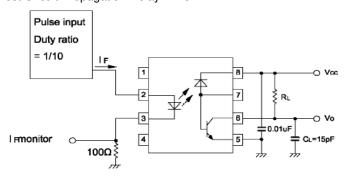
 $(T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$

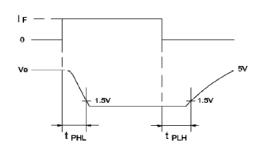
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*5 Current transfer ratio	CTR(1)	Ta=25°C , I _F =16mA V _o =0.4V, V _{cc} =4.5V	7	40	-	%
3 Current transfer ratio		I _F =16mA V _O =0.5V, V _{CC} =4.5V	5	43	-	%
Logic (0) output voltage	V _{OL}	*6 V _{CC} =4.5V, I _F =16mA	-	0.1	0.4	V
	I _{OH} (1)	Ta=25°∁ , I _F =0 V _o =V _{cc} =5.5V	-	3.0	500	nA
Logic (1) output current	І _{он} (2)	Ta=25°ℂ , I _F =0 V _o =V _{cc} =15V	-	0.01	1.0	uA
	I _{OH} (3)	$V_{CC}=V_{O}=15V$, $I_{F}=0$	-	-	50	uA
Logic (0) supply current	I _{CCL}	I _F =16mA V _o =open, V _{cc} =15V	-	200	-	uA
Logic (1) supply current	I _{CCH} (1)	Ta=25°C , I _o =0 V _F =open, V _{CC} =15V	-	0.02	1.0	uA
Logic (1) supply current	I _{ccH} (2)	I _o =0 V _o =open, V _{cc} =15V	-	-	2.0	uA
Input forward voltage	V _F	Ta=25℃, I _F =16mA	-	1.7	1.95	V
Input forward voltage temperature coefficient	△V _F /△Ta	I _F =16mA	-	-1.9	-	mV/°C
Input reverse voltage	BV _R	Ta=25°C, I _R =10uA	5.0	-	-	V
Input capacitance	C _{IN}	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25°∁ , 45%RH V _{I-0} =3KVDC , t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-0}	V _{I-O} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF
Transistor current amplification factor	h _{FE}	V _o =5V, I _o =3mA	-	70	-	

^{*5} Current transfer ratio is a ratio of input current and output current expressed in %.

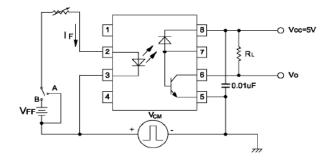
^{*6} lo = 1.1mA

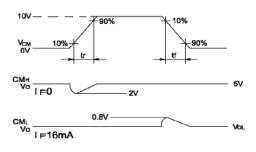
^{*7} Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)


Switching Characteristics: OPIA803


$$(T_A = 25^{\circ}C, V_{CC}=5V, I_F=16mA)$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time *9 Output (1) → (0)	t _{PHL}	R _L =4.1K Ω	-	0.3	1.5	uS
*8 Propagation delay time *9 Output (0) → (1)	t _{PLH}	R _L =4.1KΩ	-	0.4	1.5	uS
Instantaneous common *10 mode rejection voltage " Output (1) "	СМн	I _F =0, V _{CM} =10V _{P-P}	-	1000	ı	V/uS
Instantaneous common *10 mode rejection voltage " Output (0) "	CM _L	I _F =16mA, V _{CM} =10V _{P-P}	-	-1000	ı	V/uS
*12 Bandwidth	BW	R _L =100Ω	-	2.0	1	MHz


^{*8} $R_L = 4.1k$ ohms is equivalent to on LSTTL and 6.1k ohm pull-up resistor.


*9 Test Circuit Propagation Delay Time

*11 Test Circuit for Instantaneous Common Mode Rejection Voltage

^{*9} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).

^{*10} Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).

^{*11} Bandwidth represents a point where AC input goes down by 3dB.

Electrical	Charact	eristics:	OPID804
------------	---------	-----------	---------

 $(T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diod	e					
V_{F}	Forward Voltage (*4)	-	1.6	1.8	V	$I_F = 10 \text{ mA}, T_A = 25^{\circ} \text{ C}$
BV_R	Reverse Breakdown Voltage	5	1	1	٧	$I_R = 10 \ \mu A, \ T_A = 25^{\circ} \ C$
C _{IN}	Input Capacitance	1	60	1	pf	$V_F = 0.0 \text{ V}, f = 1 \text{M Hz}$
Output Ph	otologic					
V _{OL}	Low Level Output Voltage	-	0.4	0.6	V	$I_{OL} = 13 \text{ mA}, V_{CC} = 5.5 \text{ V}, I_F = 5 \text{ mA}, V_{EH} = 2 \text{V}$
Іон	High Level Output Current	1	2	250	μΑ	V_{CC} =5.5 V, V_{O} =5.5 V, V_{E} =2.0 V, I_{F} =250 μA
I _{EH}	High Level Enable Current	-	-0.8	-	mA	$V_{CC} = 5.5 \text{ V}, V_{E} = 2.0 \text{ V}$
I _{EL}	Low Level Enable Current	-2.0	-1.2	-	mA	$V_{CC} = 5.5 \text{ V}, V_E = 2.0 \text{ V}$
I _{CCL}	Low Level Output Current	-	13	18	mA	$V_{CC} = 5.5 \text{ V}, V_E = 0.5 \text{ V}, I_F = 10 \text{ mA}$
I _{CCH}	High Level Output Current	-	7	15	mA	$V_{CC} = 5.5 \text{ V}, V_E = 0.5 \text{ V}, I_F = 0 \text{ mA}$
I _{I-O}	Leakage Current	-	-	1.0	mA	$V_{I-O} = 3,000 \text{ V}, T_A = 25^{\circ} \text{ C}, t = 5 \text{ s}, \\ RH = 45\%$
t _{EHL}	Enable Propagation delay "High to Low" (*8)	-	15	1	ns	$V_{EH} = 3.0 \text{ V}, V_{EL} = 0.5 \text{ V}, R_L = 350 \Omega$
t _{ELH}	Enable Propagation delay "Low to High" (*8)	ı	40	ı	115	$I_F = 7.5 \text{ mA}, C_{LOAD} = 15 \text{ pf}$
I _{FHL} / I _{FLH}	Hysteresis	1	0.8	ı	Ratio	V_{CC} = 5 V, R_L = 280 Ω
R _{I-O}	Input-Output Isolation resistance (*5)	-	10 ¹²	-	ohm	$V_{I-O} = 500 \text{ V}, T_A = 25^{\circ} \text{ C}$
C _{I-O}	Input-Output Capacitance (*5)	-	0.6	-	pf	f = 1M Hz, T _A = 25° C
t _{PHL &} t _{PLH}	Propagation delay "High to Low" and "Low to High" (*7)	-	45	75	ns	$V_{CC} = 5 \text{ V}, R_L = 350 \Omega, I_F = 7.5 \text{ mA},$
t _{R &} t _F	Rise and Fall Time	-	30	-		$C_{LOAD} = 15 \text{ pf}, T_A = 25^{\circ}\text{C}$
СМн	Instantaneous common mode rejection voltage "High Output" (*9)	-	500	1	V/us	$V_{CM} = 10 \ V, \ R_L = 350 \ \Omega$, $I_F = 0 \ mA,$ $V_O = 2.0 \ V$
CM _L	Instantaneous common mode rejection voltage "Low Output" (*9)	-	-500	-	v/us	V_{CM} = 10 V, R_L = 350 Ω , I_F = 5 mA, V_O = 0.8 V

Notes: (Typical values are all at VCC = 5V, Ta = 25°C.

^{*5} Measured as 2-Pin element. Connect pins 2 and 3, connect pins 5,6,7 and 8.

^{*6} DC current transfer ratio is defined as the ratio of output collector current to forward bias input current.

^{*7} Refer to Figure 1.

^{*8} Refer to Figure 2.

^{*9} CM_H represents a common mode voltage ignorable rise time ratio that can hold logic (1) state in output. CM_L represents a common mode voltage ignorable fall time ratio that can hold logic (0) state in output.

Recommended Operating Conditions: OPIA804

Parameter	Symbol	Min	Max	Unit
Low level input current	I FL	0	250	uA
High level input current	I FH	7.0	15	mA
High level enable voltage	VEH	2.0	Vcc	V
Low level enable voltage	VEL	0	0.8	V
Supply voltage	Vcc	4.5	5.5	V
Fanout (TTL load)	N	-	8	-
Operating temperature	Topr	0	70	$^{\circ}$ C

Truth Table

Input	Enable	Ouput
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н

Circuit Block Diagram

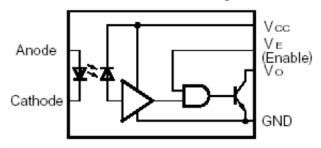
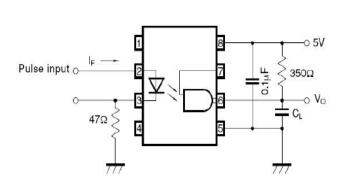
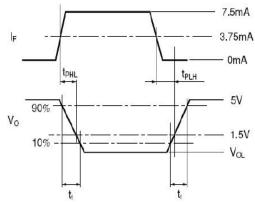
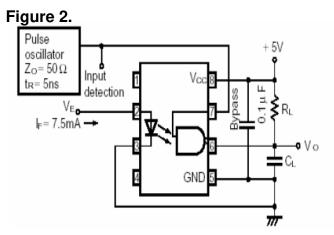




Figure 1. Test Circuit Propagation Delay Time



Recommended Operating Conditions (cont.): OPIA804

Test Circuit for Enable Propagation Delay Time

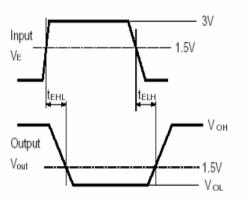
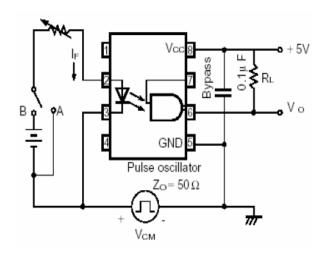
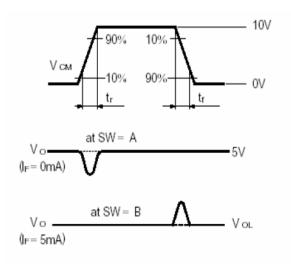




Figure 3.

Test Circuit for Instantaneous Common Mode Rejection Voltage

OPID804

Characteristic Curves

Fig.2 Input Diode Forward Voltage vs. Forward Current Fig.1 Low Level Output Voltage vs. Ambient Temperature 100 0.8 50 Conditions IF = 5 mA V_E = 2 V V_{CC} = 5.5 V 30 Vol - Low Level Output Voltage (V) 0.7 l_{OL} = 16 m 10 0.6 IoL = 12.8 mA Forward Current IF (mA) 0.5 0.4 0.5 0.3 0.1 0.2 0.05 I_{OL} = 9.6 mA 0.1 0.0 40 0.8 1.0 1.4 1.6 1.8 2.0 T_A - Ambient Temperature (°C) Forward Voltage VF (V) Fig. 4 Low Level Output Current Fig.3 Switching Time vs. Forward Current vs. Ambient Temperature 50 120 l_F = 15 m⁴ Voc = 5 V lot - Low Level Output Current (mA) 100 Ip - 10 mA Tp - Propagation Delay (ns) 40 80 $l_p = 5 \, \text{m/s}$ -4 KΩ (T_{PLR}) 60 Conditions Vcc-5V 25 V_{0L} = 0.6 V 20 -1 KΩ (TpLH) R_L = 1 kΩ R_L = 4 kΩ (T_{PHL}) - 350 Ω (T_{PLH}) PL = 350 KΩ 0 20 -40 15 IF - Forward Current (mA) TA - Ambient Temperature (°C) Fig. 5 Input Threshold Current Fig. 6 Output Voltage vs. Input Forward Current vs. Ambient Temperature Conditions: V₀₀= 5.0 V V₀ = 0.6 V IFT - Input Threshold Current (mA) RL = 350 R_L = 350Ω Output Voltage (V) -20 20 60 80 -40 40 0 TA - Ambient Temperature (°C) IF - Forward Current (mA)

OPID804

Characteristic Curves

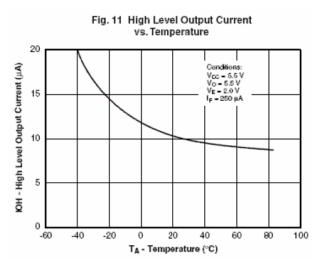


Fig. 9 Enable Propagation Delay vs. Temperature

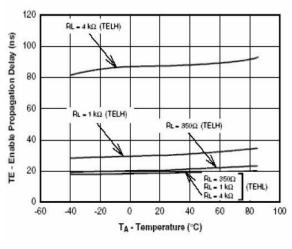


Fig. 10 Switching Time vs. Temperature

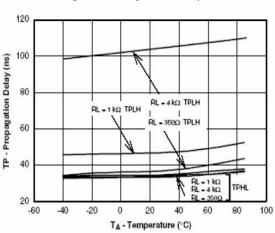


Fig. 7 Pulse Width Distortion vs. Temperature

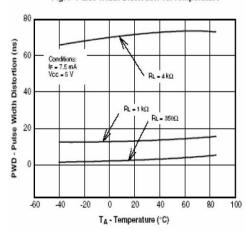
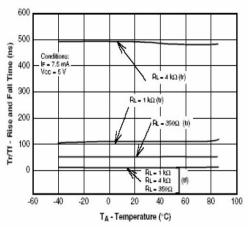



Fig. 8 Rise and Fall Time vs. Temperature

Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions
LITER D.I.	± 10%	11 samples after 500Hrs
HTRB D I _{C(OFF)}	0 Fail	@ VCE = 5.0VDC, Ta = 70°C
HTER DI	± 10%	50 samples after 96Hrs
HTFB D I _{C(ON)}	0 Fail	@ Max P _D , Ta = 25°C
MTTF @ 90% confidence	150,000 Min.	@ 25°C, 25mADC
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.
Glass Transition of body	125°C Min.	DSC test method
Temperature Humidity-Bias	± 20%	85°C, 85%RH, 500Hrs, 80% min Iceo
Temperature Cycle	± 20%	per Method 1010.7 of MIL-STD-883E
High Temperature Storage	± 20%	85°C, 500Hrs
Autoclave	0 Fail	$T_A = 121$ °C, Pressure = 15psi, Humidity = 100%, Time = 96Hrs

Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC

Label Identification


DESCRIPTION:

Size: 3" (7.4 cm) X 2.2" (5.5 cm) Lettering shall be black on white background. Format shall be as:

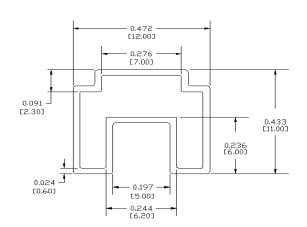
Notes:

- 1. The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
- The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture.

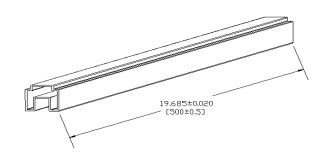
 — or use equivalent label format.

Packaging Information:

		Tu		Tube		Inner		Small Carton		Medium Carton			Large Carton		
Optek's Optocoupler	Packaging				' x 7.5 m	53.5 x	16 x 17	7.5 cm	53.5 x	53.5 x 30.7 x 17.5 c		n 53.5 x 30.7 x 25 c		25 cm	
F	Part Numbers Quantities		Qty	Weight		Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weig ht
P/H	4-PIN OPIA400D/A, OPIA410I OPIA413D/A	D/A -	100	44	3,000	1.40	12,000	6.0	6.5	24,000	12.0	12.5	36,000	18.0	18.5
and SMD	6-PIN OPIA6XXD/A Series		65	44	1,950	1.50	7,800	6.5	7.0	15,600	12.0	12.5	23,400	18.5	19.0
	8-PIN OPIA8XXD Series and 0	3XXD Series and OPID804D	48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F SOP	OPIA401B - OPIA404B, OPIA414B,		100	24	6,000	1.60	24,000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.0
SSOP	4-PIN OPIA405C - OPIA409C)	170		10,200					•					


P/H = Pin-Hole Packages (Referred as D = Dual-In-Line Package)

SMD = Standard Surface Mount Packages (Referred as A = 6.5mil SMD)


M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as B = 4.40mil SMD w/ 2.54mil Lead-Spacing)

SSOP = Shrink SOP Packages (Referred as C = 3.60mil SMD with 1.27mil Lead-Spacing)

Tube Packaging Specifications (TU):

DIMENSIONS ARE IN: INCHES [MILLIMETERS] TOLERANCE: $\pm\,0.008$ INCHES [$\pm\,0.2$ MILLIMETERS]

Quantity: 8-pin: 48pcs/tube