

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Vertical Cavity Surface Emitting Laser in Plastic T-1 Package

OPV232

Features

- 850nm VCSEL Technology
- High thermal stability
- · Low drive current/high output intensity
- Plastic T-1 convex lens for extra narrow beam angle.

Description

The OPV232 is a high performance 850nm VCSEL packaged for sensing applications. This product's combination of features including high speed, high output power and concentric beam makes it an ideal transmitter for integration into all types of position sensing equipment.

Applications include:

- ♦ Photoelectric Sensors
- ♦ Light Curtains
- Position Sensors
- ♦ Encoders

Technical Data

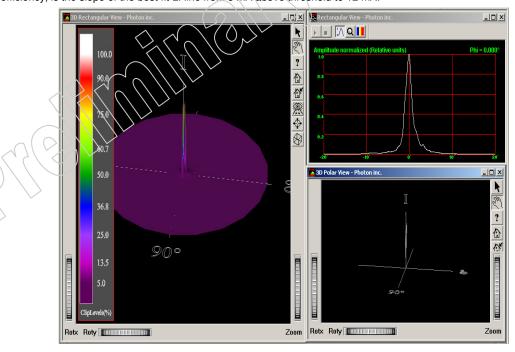
Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Maximum Forward Peak Current	30 mA
Maximum Reverse Voltage	5 Volts
Storage Temperature	-40 to +125°C
Operating Temperature	-40 to +85° C
Soldering Lead Temperature	260° C for 10 Seconds

Additional laser safety information can be found on the Optek website. See application #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may result in hazardous radiation exposure.

July 2004 Issue 1.0

OPV232 Technical Data



Electrical/Optical Characteristics (at 25 °C unless otherwise specified)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
P _{OT}	Total Power Out	1.4		4.5	mW	I _F = 12 mA
I _{TH}	Threshold Current	2.0		6.0	mA	Note 1
V _F	Forward Voltage			2.15	V	I _F = 12 mA
I _R	Reverse Current			30	nA	V _R = 5 V
R _S	Series Resistance	14		40	ohms	Note 2
η	Slope Efficiency	0.17			mW/mA	Note 3
λ	Wavelength	830		860	nm	
Δλ	Optical Bandwidth			0.85	nm	
$\Delta\eta/\DeltaT$	Temp Coefficient of Slope Efficiency		-0.40		%/°C	
θ	Beam Divergence		6		Degree	
Δλ/ΔΤ	Temp Coefficient of Wavelength		0.06		nm/°C	(0° - 70° C)
ΔΙ _{ΤΗ} /ΔΤ	Temp Coefficient of Threshold Current		±1.5		mA	(0° - 70° C)
N_{ri}	Relative Intensity Noise		-123		dB/Hz	
$\Delta V_F/\Delta T$	Temperature Coefficient for V _F		-2.5		mV/°C	

NOTES:

- (1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 6 mA to 8 mA. Line 2 from 0 mA to 2 mA.
- (2) Series Resistance is the slope of the Voltage-Current line from 8 to 12 mA.
- (3) Slope efficiency, is the slope of the best fit LI line from 8 mA above threshold to 12 mA.

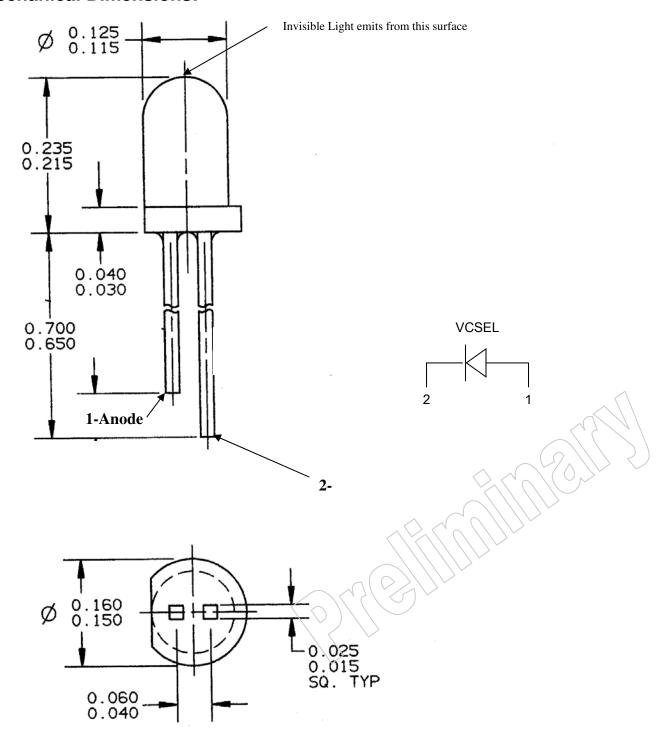
July 2004 Issue 1.0


OPV232 Technical Data

Forward Voltage vs. Forward Current

Carrollton, Texas 75006

(972) 323-2200


sensor@optekinc.com

www.optekinc.com

OPV232 Technical Data

Mechanical Dimensions:

July 2004 Issue 1.0