

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Electronics

OPV300, OPV310, OPV310Y, OPV314, OPV314Y

Features:

- 850nm VCSEL Technology
- Data rates up to 2.5 Gbps
- High thermal stability
- Low drive current / high output density
- Narrow and concentric beam angle
- Recommended for multimode fiber applications
- Burned in for communication level reliability

Description:

The **OPV300 / OPV310 / OPV314** series are high performance 850nm Vertical Cavity Surface Emitting Laser (VCSEL). The **OPV300** and **OPV310** are designed to be utilized for sensing applications as well as air transmission of data. The **OPV314** is designed for high speed communication links. The **OPV310 / OPV314** combine all the performance advantages of a VCSEL with the addition of a power monitor diode for precise control of optical power. The **OPV310 and OPV314** have a back monitor photodiode used for optical power management or optical reception for data communication applications.

The **OPV300 / OPV310** have a flat lens while the **OPV314** has a microbead lens. Refer to mechanical drawings for details.

The high performance 850nm VCSEL is designed for applications where low current is required with high on-axis optical power. These product's combine features including high speed, high output optical power and concentric beam making it an ideal transmitter for integration into all types of data communications equipment as well as for reflective and transmissive switches.

Applications:

- Fiber Channel
- Gigabit Ethernet
- ATM
- VSR
- Intra-System links
- Optical backplane interconnects
- Reflective sensing
- Interruptive sensing
- Long distance spot illumination

Additional laser safety information can be found on the Optek website. See application bulletin #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may result in hazardous radiation exposure.

OPV300, OPV310, OPV310Y, OPV314, OPV314Y

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Operating Temperature Range	0°C to +70°C
Storage Temperature Range	-40°C to +100°C
Maximum Forward Peak Current, continuous	12 mA
Maximum Reverse Voltage	5 V
Max. Continuous Optical Power at 70° C	1.1 mW
Lead Soldering Temperature	260°C for 10 sec.
Maximum Forward Current, pulsed (1 μs P.W., 10% D.C.)	48 mA

Notes:

- (1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA. Line 2 from 0 mA to 0.5 mA.
- (2) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA.
- (3) Slope efficiency is the slope of the best fit LI line from 5 mA to 8 mA using no larger than .25 mA test interval points.
- (4) Using data points taken for slope efficiency above, delta L/delta I shall be calculated for each adjacent pair of points.

Additional laser safety information can be found on the Optek website. See application bulletin #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may result in hazardous radiation exposure.

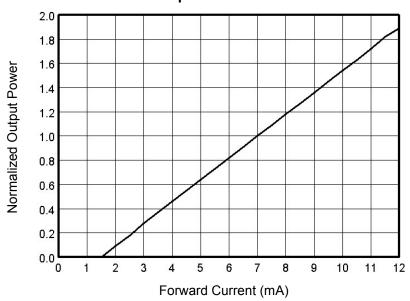
OPV300, OPV310, OPV310Y, OPV314, OPV314Y

Electrical Specifications

Electrical Characteristics (T_A = 25° C unless otherwise noted)

Symbol	Pa	rameter	Min	Тур	Max	Units	Test Conditions
Рот	Total Power Out	OPV300 / OPV310 OPV314	1.50 1.40			mW	I _F = 7 mA
I _{TH}	Threshold Current		0.80		3.00	mA	Note 1
V _F	Forward Voltage		1.60		2.20	V	I _F = 7 mA
I _R	Reverse Current				100	nA	V _R = 5 V
R _S	Series Resistance		20		55	ohms	Note 2
ŋ	Slope Efficiency		0.28		0.60	mW/mA	Note 3
	Linearity		0.00				Note 4
λ	Wavelength		840	850	860	nm	
Δλ	Optical Bandwidth				0.85	nm	
θ	Beam Divergence (OPV	300 / OPV310 only)		24		Degree	I _F = 7 mA , FWHM
t _r /t _f	Rise and Fall Time			100		ps	20% to 80%
N _{RI}	Relative Intensity Noise	2		-123		dB/Hz	
ΔI_{TH}	Temp Variance of Three	shold Current		±1.0		mA	0° - 70° C, Note 1
Δλ/ΔΤ	Temp Coefficient of Wa	evelength		0.06		nm/°C	0° - 70° C, I _F = 7 mA
$\Delta V_F \Delta T$	Temperature Coefficier	nt for VF		-2.5		mV/°C	0° - 70° C, I _F = 7 mA
Δη/ΔΤ	Temperature Coefficier	nt for Efficiency		-0.5		%/°C	0° - 70° C, Note 3
Photodiod	e Electrical Characteristi	cs (OPV310/OPV314 series)					
I _{RPD}	Reverse Current, photo	diode			30	nA	V _R = 5 V
I _{M1}	Monitor Current	OPV310 OPV314	30 40			μΑ	I _F = 7 mA, V _R = 5 V
I _{M2}	Monitor Current	OPV310 OPV314	40 45			μΑ	P _O = 2 mW, V _R = 5 V

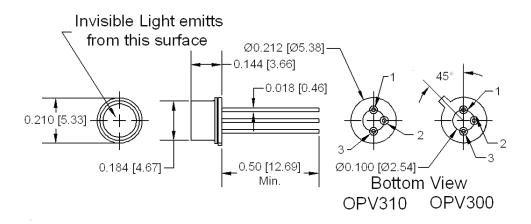
NOTES:

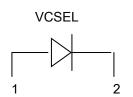

- (1) Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA. Line 2 from 0 mA to 0.5 mA.
- (2) Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA.
- (3) Slope efficiency, is the slope of the best fit LI line from 5 mA to 8 mA using no larger than .25 mA test interval points.
- (4) Using data points taken for slope efficiency above, delta L/delta I shall be calculated for each adjacent pair of points.
- (5) ESD Class 1

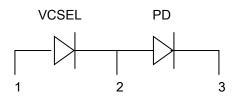
OPV300, OPV310, OPV310Y, OPV314, OPV314Y

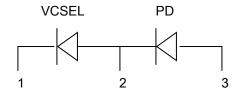
Performance

Normalized Output Power vs. Forward Current





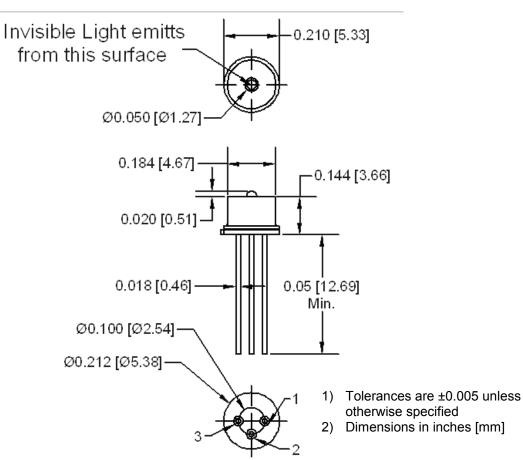

OPV300, OPV310, OPV310Y, OPV314, OPV314Y


Performance

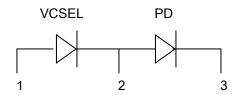
OPV300 & OPV310

OPV300			
Pin	Connection		
1	VCSEL Anode		
2	VCSEL Cathode		
3	No Connection		

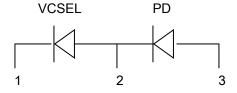
OPV310			
Pin	Connection		
1	VCSEL Anode		
2	VCSEL Cathode/PD Anode		
3	PD Cathode		


OPV310Y			
Pin	Connection		
1	VCSEL Cathode		
2	VCSEL Anode/PD Cathode		
3	PD Anode		

Issue A 11/2016 Page 5



OPV300, OPV310, OPV310Y, OPV314, OPV314Y


OPV314

Bottom View

OPV314			
Pin	Connection		
1	VCSEL Anode		
2	VCSEL Cathode/PD Anode		
3	PD Cathode		

OPV314Y			
Pin	Connection		
1	VCSEL Cathode		
2	VCSEL Anode/PD Cathode		
3	PD Anode		

General Note

OPV300, OPV310, OPV310Y, OPV314, OPV314Y

Issue	Change Description	Approval	Date
А	New Format Release	Walter Garcia Brooks	4/21/2008
A.1	Switch max ratings for Operating Temp & Storage Temp Range	Rick Cronan	6/20/08
A.2	Update Absolute Maximum Ratings chart & Electrical Characteristics	Harry Whitford	9/1/09
В	Change the Units for Temp Coefficient of Wavelength on the electrical table from %/deg. C to nm/ºC.	Harry Whitford	8/3/2015