

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly OPV315AT, OPV315BT, OPV315YAT, OPV315YBT

Features:

- 850 nm VCSEL technology
- · High thermal stability
- Up to 2.5 Gbps
- Recommended for multimode fiber applications
- Microbead lens
- Pin out and attenuation options available on request
- · Burned in for communication level reliability
- · High optical coupling to MM fiber
- ST* style receptacle

Description:

The OPV315AT and OPV315BT are high performance 850nm VCSEL packaged for high speed communication links. OPV315AT and OPV315BT combines all the performance advantages of a VCSEL with the addition of a power monitor diode for precise control of optical power.

The OPV315YAT and OPV315YBT are identical electrically and optically and differ only in pin out. Refer to mechanical drawings for details.

This product's combination of features including high speed, high output power and concentric beam makes it an ideal transmitter for integration into all types of data communications equipment.

Applications:

- Fibre Channel
- Gigabit Ethernet
- ATM
- VSR (Very Short Reach)
- Intra-system links
- Optical backplane interconnects

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature	-40° C to +125° C
Operating Temperature	0° C to +85° C
Soldering Lead Temperature	260° C for 10 Seconds
Maximum Forward Peak Current, Continuous	12 mA
Maximum Reverse Voltage	5 V
Maximum Forward Current, pulsed (1μs P.W., 10% D.C.)	48mA

Additional laser safety information can be found on the Optek website. See application #221. Classification is not marked on the device due to space limitations. See package outline for centerline of optical radiance. Operating devices beyond maximum rating may cause devices to exceed rated classification

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

^{* -} ST is a registered trademark of AT&T

Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly OPV315AT, OPV315BT, OPV315YAT, OPV315YBT

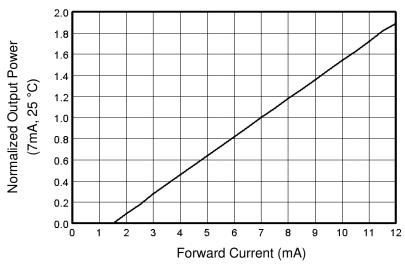
Electrical/Optical Characteristics (at 25 °C unless otherwise specified)

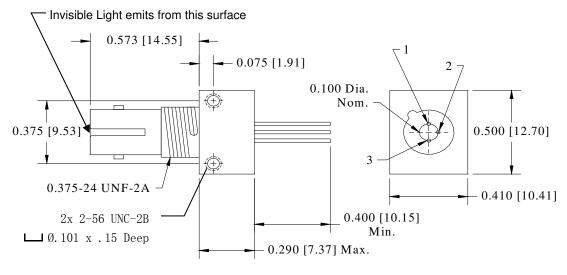
SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
P _{T50}	Total Coupled Power OPV315AT, OPV315YAT	300			μW	$I_F = 7 \text{ mA}$
	50/125 μm Fiber OPV315BT, OPV315YBT	200			μW	$I_F = 7 \text{ mA}$
I _{TH}	Threshold Current			3.0	mA	Note1
V_{F}	Forward Voltage			2.2	V	$I_F = 7 \text{ mA}$
I_R	Reverse Current			100	nA	V _R = 5 V
Rs	Series Resistance			55	ohms	Note 2
η	Slope Efficiency OPV315AT, OPV315YAT	30			μW/mA	Note 3
	OPV315BT, OPV315YBT	20			μW/mA	Note 3
I _{RPD}	Reverse Current, photodiode			35	nA	V _R = 40 V
	Linearity	0.00				Note 4
I _M	Monitor Current	30			μΑ	$I_F = 7 \text{ mA}, V_R = 5 \text{ V}$
λ	Wavelength			860	nm	
Δλ	Optical Bandwidth			0.85	nm	
t _r	Rise Time		90		ps	20% to 80%
t _f	Fall Time		120		ps	80% to 20%
N _{RI}	Relative Intensity Noise		-123		db/Hz	
Δη/ΔΤ	Temp Coefficient of Slope Efficiency		-0.5		%/°C	0° - 70° C
Δl_{TH}	Temp Variance of Threshold Current		±1.0		mA	0° - 70° C
Δλ/ΔΤ	Temp Coefficient of Wavelength		0.06		nm/°C	0° - 70° C
ΔVf/ΔT	Temperature Coefficient for V _F		-2.5		mV/°C	

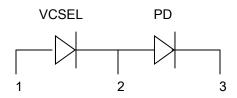
NOTES:

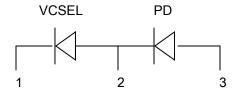
⁽¹⁾ Threshold Current is based on the two line intersection method specified in Telcordia GR-468-Core. Line 1 from 4 mA to 6 mA. Line 2 from 0 mA to 0.5 mA.

⁽²⁾ Series Resistance is the slope of the Voltage-Current line from 5 to 8 mA.


⁽³⁾ Slope efficiency, is the slope of the best fit LI line from 5 mA to 8 mA using no larger than .25 mA test interval points. Measured with a 50/125 μm fiber.


⁽⁴⁾ Linearity—Using data points taken for slope efficiency above, data L/delta I shall be calculated for each adjacent pair of points.


Vertical Cavity Surface Emitting Laser in ST Optical Sub-Assembly OPV315AT, OPV315BT, OPV315YAT, OPV315YBT


Normalized Output Power vs. Forward Current

OPV315AT, OPV315BT				
Pin	Connection			
1	VCSEL Anode			
2	VCSEL Cathode/PD Anode			
3	PD Cathode			

OPV315YAT, OPV315YBT				
Pin	Connection			
1	VCSEL Cathode			
2	VCSEL Anode/PD Cathode			
3	PD Anode			

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.