imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DE1-SOC

USER MANUAL

in the second

Copyright © 2003-2014 Terasic Technologies Inc. All Rights Reserved.

CHAPTER 1	DE1-SOC DEVELOPMENT KIT
1.1 Package Co	ntents4
1.2 DE1-SoC S	ystem CD5
1.3 Getting Hel	p5
CHAPTER 2	INTRODUCTION OF THE DE1-SOC BOARD
2.1 Layout and	Components
2.2 Block Diag	ram of the DE1-SoC Board
CHAPTER 3	USING THE DE1-SOC BOARD12
3.1 Settings of	FPGA Configuration Mode12
3.2 Configurati	on of Cyclone V SoC FPGA on DE1-SoC13
3.3 Board Statu	s Elements
3.4 Board Rese	t Elements
3.5 Clock Circu	itry
3.6 Peripherals	Connected to the FPGA
3.6.1 User Push	a-buttons, Switches and LEDs
3.6.2 7-segmen	t Displays
3.6.3 2x20 GPI	O Expansion Headers
3.6.4 24-bit Au	dio CODEC
3.6.5 I2C Multi	plexer
3.6.6 VGA	
3.6.7 TV Deco	ler
3.6.8 IR Receiv	er
3.6.9 IR Emitte	r LED

3.6.10 SDRAM Memory	
3.6.11 PS/2 Serial Port	40
3.6.12 A/D Converter and 2x5 Header	
3.7 Peripherals Connected to Hard Processor System (HPS)	
3.7.1 User Push-buttons and LEDs	
3.7.2 Gigabit Ethernet	
3.7.3 UART	
3.7.4 DDR3 Memory	
3.7.5 Micro SD Card Socket	
3.7.6 2-port USB Host	49
3.7.7 G-sensor	
3.7.8 LTC Connector	51
CHAPTER 4 DE1-SOC SYSTEM BUILDER	53
4.1 Introduction	53
4.2 Design Flow	53
4.3 Using DE1-SoC System Builder	54
CHAPTER 5 EXAMPLES FOR FPGA	60
5.1 DE1-SoC Factory Configuration	60
5.2 Audio Recording and Playing	61
5.3 Karaoke Machine	64
5.4 SDRAM Test in Nios II	66
5.5 SDRAM Test in Verilog	69
5.6 TV Box Demonstration	71
5.7 PS/2 Mouse Demonstration	73
5.8 IR Emitter LED and Receiver Demonstration	76
5.9 ADC Reading	
CHAPTER 6 EXAMPLES FOR HPS SOC	85

6.1 Hello Program	
6.2 Users LED and KEY	
6.3 I2C Interfaced G-sensor	
6.4 I2C MUX Test	96
CHAPTER 7 EXAMPLES FOR USING BOTH HPS SOC AND FGPA	99
7.1 HPS Control LED and HEX	
7.2 DE1-SoC Control Panel	
7.3 DE1-SoC Linux Frame Buffer Project	
CHAPTER 8 PROGRAMMING THE EPCQ DEVICE	105
8.1 Before Programming Begins	
8.2 Convert .SOF File to .JIC File	
8.3 Write JIC File into the EPCQ Device	
8.4 Erase the EPCQ Device	
8.5 Nios II Boot from EPCQ Device in Quartus II v13.1	
CHAPTER 9 APPENDIX	113
9.1 Revision History	
9.2 Copyright Statement	

Chapter 1 DE1-SoC Development Kit

The DE1-SoC Development Kit presents a robust hardware design platform built around the Altera System-on-Chip (SoC) FPGA, which combines the latest dual-core Cortex-A9 embedded cores with industry-leading programmable logic for ultimate design flexibility. Users can now leverage the power of tremendous re-configurability paired with a high-performance, low-power processor system. Altera's SoC integrates an ARM-based hard processor system (HPS) consisting of processor, peripherals and memory interfaces tied seamlessly with the FPGA fabric using a high-bandwidth interconnect backbone. The DE1-SoC development board is equipped with high-speed DDR3 memory, video and audio capabilities, Ethernet networking, and much more that promise many exciting applications.

The DE1-SoC Development Kit contains all the tools needed to use the board in conjunction with a computer that runs the Microsoft Windows XP or later.

1.1 Package Contents

Figure 1-1 shows a photograph of the DE1-SoC package.

The DE1-SoC package includes:

- The DE1-SoC development board
- DE1-SoC Quick Start Guide
- USB cable (Type A to B) for FPGA programming and control
- USB cable (Type A to Mini-B) for UART control
- 12V DC power adapter

1.2 DE1-SoC System CD

The DE1-SoC System CD contains all the documents and supporting materials associated with DE1-SoC, including the user manual, system builder, reference designs, and device datasheets. Users can download this system CD from the link: <u>http://cd-de1-soc.terasic.com</u>.

1.3 Getting Help

Here are the addresses where you can get help if you encounter any problems:

- Altera Corporation
- 101 Innovation Drive San Jose, California, 95134 USA

Email: <u>university@altera.com</u>

- Terasic Technologies
- 9F., No.176, Sec.2, Gongdao 5th Rd, East Dist, Hsinchu City, 30070. Taiwan

Email: support@terasic.com

Tel.: +886-3-575-0880

Website: <u>de1-soc.terasic.com</u>

Chapter 2 Introduction of the DE1-SoC Board

This chapter provides an introduction to the features and design characteristics of the board.

2.1 Layout and Components

Figure 2-1 shows a photograph of the board. It depicts the layout of the board and indicates the location of the connectors and key components.

Figure 2-1 DE1-SoC development board (top view)

Figure 2-2 De1-SoC development board (bottom view)

The DE1-SoC board has many features that allow users to implement a wide range of designed circuits, from simple circuits to various multimedia projects.

The following hardware is provided on the board:

■ FPGA

- Altera Cyclone® V SE 5CSEMA5F31C6N device
- Altera serial configuration device EPCQ256
- USB-Blaster II onboard for programming; JTAG Mode
- 64MB SDRAM (16-bit data bus)
- 4 push-buttons
- 10 slide switches
- 10 red user LEDs
- Six 7-segment displays
- Four 50MHz clock sources from the clock generator
- 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks
- VGA DAC (8-bit high-speed triple DACs) with VGA-out connector
- TV decoder (NTSC/PAL/SECAM) and TV-in connector
- PS/2 mouse/keyboard connector
- IR receiver and IR emitter
- Two 40-pin expansion header with diode protection
- A/D converter, 4-pin SPI interface with FPGA
- HPS (Hard Processor System)
- 800MHz Dual-core ARM Cortex-A9 MPCore processor
- 1GB DDR3 SDRAM (32-bit data bus)
- 1 Gigabit Ethernet PHY with RJ45 connector
- 2-port USB Host, normal Type-A USB connector
- Micro SD card socket
- Accelerometer (I2C interface + interrupt)
- UART to USB, USB Mini-B connector
- Warm reset button and cold reset button
- One user button and one user LED
- LTC 2x7 expansion header

2.2 Block Diagram of the DE1-SoC Board

Figure 2-3 is the block diagram of the board. All the connections are established through the Cyclone V SoC FPGA device to provide maximum flexibility for users. Users can configure the FPGA to implement any system design.

Figure 2-3 Block diagram of DE1-SoC

Detailed information about Figure 2-3 are listed below.

FPGA Device

- Cyclone V SoC 5CSEMA5F31 Device
- Dual-core ARM Cortex-A9 (HPS)
- 85K programmable logic elements
- 4,450 Kbits embedded memory
- 6 fractional PLLs
- 2 hard memory controllers

Configuration and Debug

- Quad serial configuration device EPCQ256 on FPGA
- Onboard USB-Blaster II (normal type B USB connector)

Memory Device

- 64MB (32Mx16) SDRAM on FPGA
- 1GB (2x256Mx16) DDR3 SDRAM on HPS
- Micro SD card socket on HPS

Communication

- Two port USB 2.0 Host (ULPI interface with USB type A connector)
- UART to USB (USB Mini-B connector)
- 10/100/1000 Ethernet
- PS/2 mouse/keyboard
- IR emitter/receiver
- I2C multiplexer

Connectors

- Two 40-pin expansion headers
- One 10-pin ADC input header
- One LTC connector (one Serial Peripheral Interface (SPI) Master ,one I2C and one GPIO interface)

Display

• 24-bit VGA DAC

Audio

• 24-bit CODEC, Line-in, Line-out, and microphone-in jacks

Video Input

• TV decoder (NTSC/PAL/SECAM) and TV-in connector

ADC

- Fast throughput rate: 1 MSPS
- Channel number: 8
- Resolution: 12-bit
- Analog input range : $0 \sim 2.5$ V or $0 \sim 5$ V as selected via the RANGE bit in the control register

Switches, Buttons, and Indicators

- 5 user Keys (FPGA x4, HPS x1)
- 10 user switches (FPGA x10)
- 11 user LEDs (FPGA x10, HPS x 1)
- 2 HPS reset buttons (HPS_RESET_n and HPS_WARM_RST_n)
- Six 7-segment displays

Sensors

• G-Sensor on HPS

Power

• 12V DC input

Chapter 3

Board

Using the DE1-SoC

This chapter provides an instruction to use the board and describes the peripherals.

3.1 Settings of FPGA Configuration Mode

When the DE1-SoC board is powered on, the FPGA can be configured from EPCQ or HPS. The MSEL[4:0] pins are used to select the configuration scheme. It is implemented as a 6-pin DIP switch **SW10** on the DE1-SoC board, as shown in **Figure 3-1**.

Figure 3-1 DIP switch (SW10) setting of Active Serial (AS) mode at the back of DE1-SoC board

Table 3-1 shows the relation between MSEL[4:0] and DIP switch (SW10).

Board Reference	Signal Name	Description	Default
SW10.1	MSEL0		ON ("0")
SW10.2	MSEL1		OFF ("1")
SW10.3	MSEL2	Use these pins to set the FPGA Configuration scheme	ON ("0")
SW10.4	MSEL3		ON ("0")
SW10.5	MSEL4		OFF ("1")
SW10.6	N/A	N/A	N/A

Table 3-1 FPG.	A Configuration	Mode Switch	(SW10)
	1 Configuration	moue ownen	

Figure 3-1 shows MSEL[4:0] setting of AS mode, which is also the default setting on DE1-SoC. When the board is powered on, the FPGA is configured from EPCQ, which is pre-programmed with the default code. If developers wish to reconfigure FPGA from an application software running on Linux, the MSEL[4:0] needs to be set to "01010" before the programming process begins. If developers using the "Linux Console with frame buffer" or "Linux LXDE Desktop" SD Card image, the MSEL[4:0] needs to be set to "00000" before the board is powered on.

18	ble 3-2 MISEL Pin S	ettings for FPGA Configure of DEI-SoC
MSEL[4:0]	Configure Scheme	Description
10010	AS	FPGA configured from EPCQ (default)
01010	FPPx32	FPGA configured from HPS software: Linux
		FPGA configured from HPS software: U-Boot, with
00000	FPPx16	image stored on the SD card, like LXDE Desktop or
		console Linux with frame buffer edition.

TIL JANGEL D. C. W • PDF1 C-C •

3.2 Configuration of Cyclone V SoC FPGA on DE1-SoC

There are two types of programming method supported by DE1-SoC:

JTAG programming: It is named after the IEEE standards Joint Test Action Group. 1.

The configuration bit stream is downloaded directly into the Cyclone V SoC FPGA. The FPGA will retain its current status as long as the power keeps applying to the board; the configuration information will be lost when the power is off.

AS programming: The other programming method is Active Serial configuration. 2.

The configuration bit stream is downloaded into the quad serial configuration device (EPCQ256), which provides non-volatile storage for the bit stream. The information is retained within EPCQ256

even if the DE1-SoC board is turned off. When the board is powered on, the configuration data in the EPCQ256 device is automatically loaded into the Cyclone V SoC FPGA.

■ JTAG Chain on DE1-SoC Board

The FPGA device can be configured through JTAG interface on DE1-SoC board, but the JTAG chain must form a closed loop, which allows Quartus II programmer to the detect FPGA device. **Figure 3-2** illustrates the JTAG chain on DE1-SoC board.

Figure 3-2 Path of the JTAG chain

Configure the FPGA in JTAG Mode

There are two devices (FPGA and HPS) on the JTAG chain. The following shows how the FPGA is programmed in JTAG mode step by step.

1. Open the Quartus II programmer and click "Auto Detect", as circled in Figure 3-3

Programmer - [Chai	in3.cdf]							
	essing <u>t</u> oois <u>w</u> indow	Help Y	~		r	Searc	ch altera.co	m 🕚
🚔 Hardware Setup	DE-SoC [USB-1]	Mode:	JTAG		Progress:			
Enable real-time ISP t	o allow background program	ming (for MAX II and N	1AX V devices)	11				
Start	File	Device	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine
Stop								
Auto Detect								
Colete								
Add File								
Change File	•		III					٠
Save File								
Add Device								
Un Down								
								1

Figure 3-3 Detect FPGA device in JTAG mode

2. Select detected device associated with the board, as circled in Figure 3-4.

Figure 3-4 Select 5CSEMA5 device

3. Both FPGA and HPS are detected, as shown in Figure 3-5.

Figure 3-5 FPGA and HPS detected in Quartus programmer

4. Right click on the FPGA device and open the .sof file to be programmed, as highlighted in **Figure 3-6**.

Edit view Pr	ocessing Tools 1	Window Help	2				Sea	rch altera.c	om
Hardware Setup	DE-SoC [USB-1]		Mode:	JTAG	•	Progress:			
Enable real-time ISF	o to allow background	d programming (for M	1AX II and M	IAX V devices)					
Start]	File	De	evice	Checksum	Usercode	Program/ Configure	Verify	Blank- Check	Examine
10	<none></none>	SOCVHPS		00000000	<none></none>		(1)		
www.stop	<none></none>	5CSEMAE		0000000	enona's				11
Auto Datact			Delete		Del		-		
Auto Detect			Select All		Ctrl+A				
💢 Delete									
M		<u> </u>	Add File						
Add File		20	Change File	e					
Change File			Save File			1			
10	.					-			
Save File			Add IPS File.	e					
Add Device			Change IPS File						
			Delete IPS	File					
1 ¹¹ Up	1	ADTERVAL							
1W-a	TDI		Add PR Pro	ogramming File					
# w Down			Change PR	Programming Fil	e				
	-		Delete PR	Programming File					
		SOCVHPS							
	TDO		Attach Flas	sh Device					
	•		Change Fla	ash Device					
			Delete Flas	h Device					
			Add Device	2					

Figure 3-6 Open the .sof file to be programmed into the FPGA device

5. Select the .sof file to be programmed, as shown in Figure 3-7.

ok in: 🛃 D: \c	de1_soc\trunk\cd\CD_HW_revCstrations\FPGA\DE1_SoC_Default	0	🗾 🖽
My Computer	hc_output		
	🖉 V 🤣 VGA_DATA		
	DE1_SoC_Default.sof		
e name:			Onen

Figure 3-7 Select the .sof file to be programmed into the FPGA device

6. Click "Program/Configure" check box and then click "Start" button to download the .sof file into the FPGA device, as shown in **Figure 3-8**.

Figure 3-8 Program .sof file into the FPGA device

• Configure the FPGA in AS Mode

- The DE1-SoC board uses a quad serial configuration device (EPCQ256) to store configuration data for the Cyclone V SoC FPGA. This configuration data is automatically loaded from the quad serial configuration device chip into the FPGA when the board is powered up.
- Users need to use Serial Flash Loader (SFL) to program the quad serial configuration device via JTAG interface. The FPGA-based SFL is a soft intellectual property (IP) core within the FPGA that bridge the JTAG and Flash interfaces. The SFL Megafunction is available in Quartus II. Figure 3-9 shows the programming method when adopting SFL solution.
- Please refer to Chapter 9: Steps of Programming the Quad Serial Configuration Device for the basic programming instruction on the serial configuration device.

Figure 3-9 Programming a quad serial configuration device with SFL solution

3.3 Board Status Elements

In addition to the 10 LEDs that FPGA device can control, there are 5 indicators which can indicate the board status (See Figure 3-10), please refer the details in Table 3-3

Figure 3-10 LED Indicators on DE1-SoC

Board Reference	LED Name	Description
D14	12-V Power	Illuminate when 12V power is active.
тхр	UART TXD	Illuminate when data is transferred from FT232R to USB Host.
RXD	UART RXD	Illuminate when data is transferred from USB Host to FT232R.
D5	JTAG_RX	Reserved
D4	JTAG_TX	

Table 3-3 LED Indicators

3.4 Board Reset Elements

There are two HPS reset buttons on DE1-SoC, HPS (cold) reset and HPS warm reset, as shown in **Figure 3-11**. **Table 3-4** describes the purpose of these two HPS reset buttons. **Figure 3-12** is the reset tree for DE1-SoC.

Figure 3-11 HPS cold reset and warm reset buttons on DE1-SoC

Board Reference	Signal Name	Description
KEY5	HPS_RESET_N	Cold reset to the HPS, Ethernet PHY and USB host device. Active low input which resets all HPS logics that can be reset.
KEY7	HPS_WARM_RST_N	Warm reset to the HPS block. Active low input affects the system reset domain for debug purpose.

 Table 3-4 Description of Two HPS Reset Buttons on DE1-SoC

Figure 3-12 HPS reset tree on DE1-SoC board

3.5 Clock Circuitry

Figure 3-13 shows the default frequency of all external clocks to the Cyclone V SoC FPGA. A clock generator is used to distribute clock signals with low jitter. The four 50MHz clock signals connected to the FPGA are used as clock sources for user logic. One 25MHz clock signal is connected to two HPS clock inputs, and the other one is connected to the clock input of Gigabit

Ethernet Transceiver. Two 24MHz clock signals are connected to the clock inputs of USB Host/OTG PHY and USB hub controller. The associated pin assignment for clock inputs to FPGA I/O pins is listed in Table 3-5.

Figure 3-13 Block diagram of the clock distribution on DE1-SoC

Signal Name	FPGA Pin No.	Description	I/O Standard
CLOCK_50	PIN_AF14	50 MHz clock input	3.3V
CLOCK2_50	PIN_AA16	50 MHz clock input	3.3V
CLOCK3_50	PIN_Y26	50 MHz clock input	3.3V
CLOCK4_50	PIN_K14	50 MHz clock input	3.3V
HPS_CLOCK1_25	PIN_D25	25 MHz clock input	3.3V
HPS_CLOCK2_25	PIN_F25	25 MHz clock input	3.3V

3.6 Peripherals Connected to the FPGA

This section describes the interfaces connected to the FPGA. Users can control or monitor different interfaces with user logic from the FPGA.

3.6.1 User Push-buttons, Switches and LEDs

The board has four push-buttons connected to the FPGA, as shown in **Figure 3-14** Connections between the push-buttons and the Cyclone V SoC FPGA. Schmitt trigger circuit is implemented and act as switch debounce in **Figure 3-15** for the push-buttons connected. The four push-buttons named KEY0, KEY1, KEY2, and KEY3 coming out of the Schmitt trigger device are connected directly to the Cyclone V SoC FPGA. The push-button generates a low logic level or high logic level when it is pressed or not, respectively. Since the push-buttons are debounced, they can be used as clock or reset inputs in a circuit.

Figure 3-14 Connections between the push-buttons and the Cyclone V SoC FPGA

Figure 3-15 Switch debouncing

There are ten slide switches connected to the FPGA, as shown in **Figure 3-16**. These switches are not debounced and to be used as level-sensitive data inputs to a circuit. Each switch is connected directly and individually to the FPGA. When the switch is set to the DOWN position (towards the edge of the board), it generates a low logic level to the FPGA. When the switch is set to the UP position, a high logic level is generated to the FPGA.

Figure 3-16 Connections between the slide switches and the Cyclone V SoC FPGA

There are also ten user-controllable LEDs connected to the FPGA. Each LED is driven directly and individually by the Cyclone V SoC FPGA; driving its associated pin to a high logic level or low

