

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DE5a-Net

FPGA Development Kit
User Manual

DE5a-NET CONTENTS

Chapter 1	5
1.1 General Description	5
1.2 Key Features	6
1.3 Block Diagram	7
Chapter 2	.10
Board Components	
2.1 Board Overview	10
2.2 Configuration, Status and Setup	11
2.3 General User Input/Output	
2.4 Temperature Sensor and Fan Control	18
2.5 Power Monitor	20
2.6 Clock Circuit	21
2.7 FLASH Memory	23
2.8 DDR3 SO-DIMM	26
2.9 QDRII+ SRAM	37
2.10 QSPF+ Ports	46
2.11 PCI Express	49
2-12 RS-422 Expansion Header	52
Chapter 3	.54
System Builder	
3.1 Introduction	54
3.2 General Design Flow	55
3.3 Using System Builder	56

627656

DE5a-NET CONTENTS

Chapter 4	. 62
Flash Programming	62
4.1 CFI Flash Memory Map	62
4.2 FPGA Configure Operation	63
4.3 Flash Programming with Users Design	64
4.4 Restore Factory Settings	65
Chapter 5	. 67
Peripheral Reference Design	67
5.1 Configure Si5340A/B in RTL	67
5.2 Nios II control for SI5340/Temperature/Power	76
5.3 Fan Speed Control	81
Chapter 6	.84
Chapter 6 Memory Reference Design	
•	84
Memory Reference Design	84 84
Memory Reference Design	84 84 87
Memory Reference Design	84 84 87 89
Memory Reference Design	84 87 89
Memory Reference Design	84 87 89
Memory Reference Design	84 87 89 93
Memory Reference Design	8487899393
Memory Reference Design	84 87 89 93 93 93

637656

DE5a-NET **CONTENTS**

Chapter 8	. 116
Transceiver Verification	116
8.1 Function of the Transceiver Test Code	116
8.2 Loopback Fixture	116
8.3 Testing	118
Additional Information	120
Getting Help	120

Chapter 1

Overview

his chapter provides an overview of the DE5a-Net Development Board and installation guide.

1.1 General Description

The Terasic DE5a-Net Arria 10 GX FPGA Development Kit provides the ideal hardware solution for designs that demand high capacity and bandwidth memory interfacing, ultra-low latency communication, and power efficiency. With a full-height, 3/4-length form-factor package, the DE5a-Net is designed for the most demanding high-end applications, empowered with the top-of-the-line Altera Arria 10 GX, delivering the best system-level integration and flexibility in the industry.

The Arria® 10 GX FPGA features integrated transceivers that transfer at a maximum of 12.5 Gbps, allowing the DE5a-Net to be fully compliant with version 3.0 of the PCI Express standard, as well as allowing an ultra low-latency, straight connections to four external 40G QSFP+ modules. Not relying on an external PHY will accelerate mainstream development of network applications enabling customers to deploy designs for a broad range of high-speed connectivity applications. For designs that demand high capacity and high speed for memory and storage, the DE5a-Net delivers with two independent banks of DDR3 SO-DIMM RAM, four independent banks of QDRII+ SRAM, high-speed parallel flash memory. The feature-set of the DE5a-Net fully supports all high-intensity applications such as low-latency trading, cloud computing, high-performance computing, data acquisition, network processing, and signal processing.

1.2 Key Features

The following hardware is implemented on the DE5a-Net board:

■ FPGA

Altera Arria® 10 GX FPGA (10AX115N3F45I2SG)

■ FPGA Configuration

- On-Board USB Blaster II or JTAG header for FPGA programming
- Fast passive parallel (FPPx32) configuration via MAX II CPLD and flash memory

General user input/output:

- 8 LEDs
- 4 push-buttons
- 2 slide switches
- 2 seven-segment displays

■ Clock System

- 50MHz Oscillator
- Programmable clock generators Si5340A and Si5340B
- One SMA connector for external clock input
- One SMA connector for clock output

Memory

- DDR3 SO-DIMM SDRAM
- QDRII+ SRAM
- FLASH

Communication Ports

- Four QSFP+ connectors
- PCI Express (PCIe) x8 edge connector
- One RS422 transceiver with RJ45 connector

System Monitor and Control

- Temperature sensor
- Fan control
- Power monitor

Power

- PCI Express 6-pin power connector, 12V DC Input
- PCI Express edge connector power

■ Mechanical Specification

PCI Express full-height and 3/4-length

1.3 Block Diagram

Figure 1-1 shows the block diagram of the DE5a-Net board. To provide maximum flexibility for the users, all key components are connected with the Arria 10 GX FPGA device. Thus, users can configure the FPGA to implement any system design.

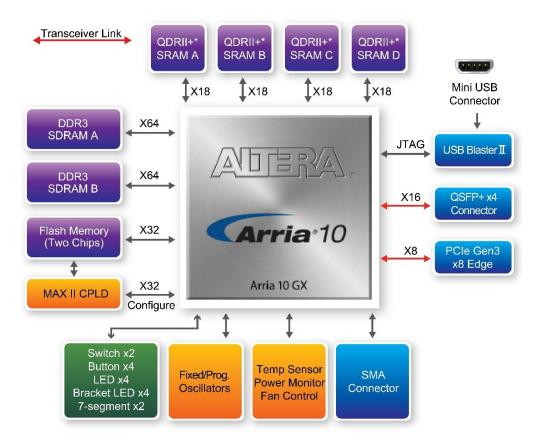


Figure 1-1 Block diagram of the DE5a-Net board

Below is more detailed information regarding the blocks in **Figure 1-1**.

Arria 10 GX FPGA

- 10AX115N3F45I2SG
- 1,150K logic elements (LEs)
- 67-Mbits embedded memory
- 48 transceivers (12.5Gbps)
- 3,036 18-bit x 19-bit multipliers
- 1,518 Variable-precision DSP blocks
- 4 PCI Express hard IP blocks
- 768 user I/Os
- 384 LVDS channels
- 32 phase locked loops (PLLs)

■ JTAG Header and FPGA Configuration

- On-board USB Blaster II or JTAG header for use with the Quartus II Programmer
- MAXII CPLD 5M2210 System Controller and Fast Passive Parallel (FPP x32) configuration

■ Memory devices

- 32MB QDRII+ SRAM
- Up to 8GB DDR3 SO-DIMM SDRAM for each DDR3 socket
- 256MB FLASH

■ General user I/O

- 8 user controllable LEDs
- 4 user push buttons
- 2 user slide switches
- 2 seven-segment displays

■ On-Board Clock

- 50MHz oscillator
- Programming PLL providing clock for 40G QSFP+ transceiver
- Programming PLL providing clock for PCle transceiver
- Programming PLL providing clocks for DDR3 SDRAM and QDRII+ SRAM

■ Four QSFP+ ports

• Four QSFP+ connector (40 Gbps+)

■ PCI Express x8 edge connector

- Support for PCle x8 Gen1/2/3
- Edge connector for PC motherboard with x8 or x16 PCI Express slot

■ Power Source

- PCI Express 6-pin DC 12V power
- PCI Express edge connector power

Chapter 2

Board Components

his chapter introduces all the important components on the DE5a-Net.

2.1 Board Overview

Figure 2-1 is the top and bottom view of the DE5a-Net development board. It depicts the layout of the board and indicates the location of the connectors and key components. Users can refer to this figure for relative location of the connectors and key components.

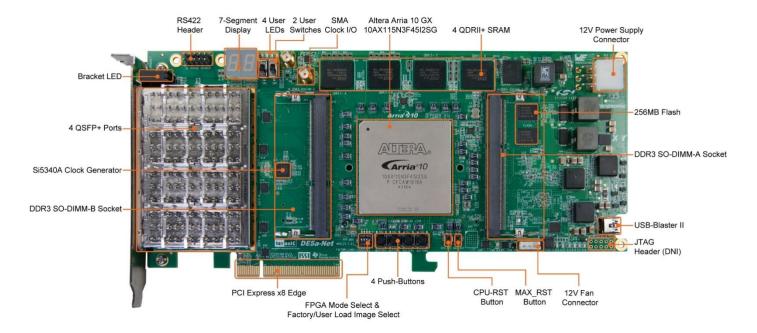


Figure 2-1FPGABoard (Top)

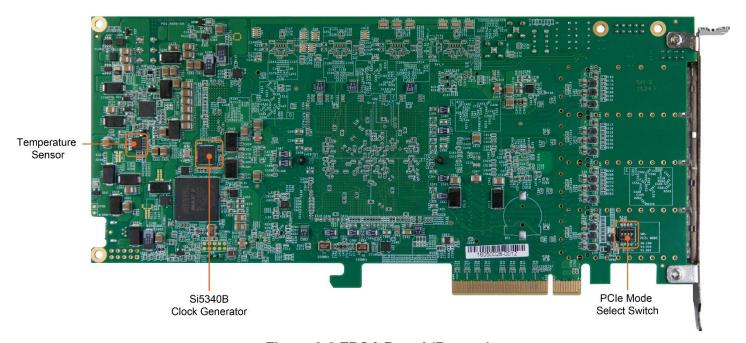


Figure 2-2 FPGA Board (Bottom)

2.2 Configuration, Status and Setup

■ Configure

The FPGA board supports two configuration methods for the Arria 10 FPGA:

- Configure the FPGA using the on-board USB-Blaster II.
- Flash memory configuration of the FPGA using stored images from the flash memory on power-up.

For programming by on-board USB-Blaster II, the following procedures show how to download a configuration bit stream into the Arria 10 GX FPGA:

- Make sure that power is provided to the FPGA board
- Connect your PC to the FPGA board using a mini-USB cable and make sure the USB-Blaster II driver is installed on PC.
- Launch Quartus II programmer and make sure the USB-Blaster II is detected.
- In Quartus II Programmer, add the configuration bit stream file (.sof), check the associated "Program/Configure" item, and click "Start" to start FPGA programming.

Status LED

The FPGA Board development board includes board-specific status LEDs to indicate board status. Please refer to **Table 2-1** for the description of the LED indicator.

Table 2-1 Status LED

Board Reference	LED Name	Description
D6	12-V Power	Illuminates when 12-V power is active.
D5	3.3-V Power	Illuminates when 3.3-V power is active.
D16	CONF DONE	Illuminates when the FPGA is successfully configured. Driven by the MAX II CPLD 5M2210 System Controller.
D15	Loading	Illuminates when the MAX II CPLD 5M2210 System Controller is actively configuring the FPGA. Driven by the MAX II CPLD 5M2210 System Controller with the Embedded Blaster CPLD.
D17	Error	Illuminates when the MAX II CPLD EPM2210 System Controller fails to configure the FPGA. Driven by the MAX II CPLD EPM2210 System Controller.
D19	PAGE	Illuminates when FPGA is configured by the factory configuration bit stream.

■ Setup PCI Express Control DIP switch

The PCI Express Control DIP switch (SW5) is provided to enable or disable different configurations of the PCIe Connector. **Table 2-2**lists the switch controls and description.

Table 2-2 SW5 PCle Control DIP Switch

Board Reference	Signal Name	Description	Default
SW5.1	IPCIE PRSNT2n x1	On: Enable x1 presence detect Off: Disable x1 presence detect	Off
SW5.2	PCIE PRSNI2n x4	On: Enable x4 presence detect Off: Disable x4 presence detect	Off
SW5.3	PCIE_PRSNT2n_x8	On : Enable x8 presence detect	On

Off: Disable x8 presence detect

■ Setup Configure Mode

The position 1~3 of DIP switch SW3 are used to specify the configuration mode of the FPGA. As currently only one mode is supported, please set all positions as shown in **Figure 2-3**.

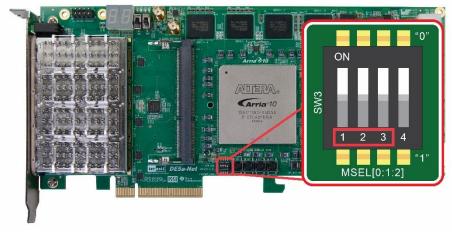


Figure 2-3

Position of DIP switch SW3 for Configure Mode

■ Select Flash Image for Configuration

The position 4 of DIP switch SW3 is used to specify the image for configuration of the FPGA. Setting Position 4 of SW3 to "1" (down position) specifies the default factory image to be loaded, as shown in **Figure 2-4**. Setting Position 4 of SW3 to "0" (up position) specifies the DE5a-Net to load a user-defined image, as shown in **Figure 2-5**.

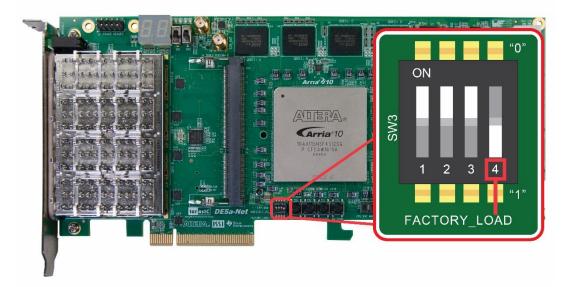


Figure 2-4 Position of DIP switch SW3 for Image Select – Factory Image Load

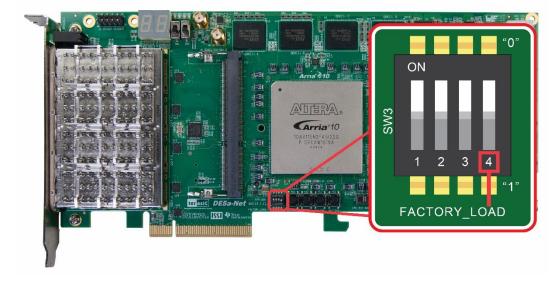


Figure 2-5 Position of DIP switch SW3 for Image Select – User Image Load

2.3 General User Input/Output

This section describes the user I/O interface to the FPGA.

■ User Defined Push-buttons

The FPGA board includes four user defined push-buttons that allow users to interact with the Arria 10 GX device. Each push-button provides a high logic level or a low logic level when it is not pressed or pressed, respectively. **Table 2-3** lists the board

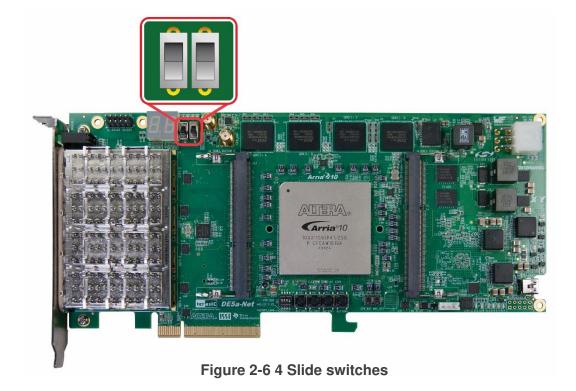

references, signal names and their corresponding Arria 10 GX device pin numbers.

Table 2-3 Push-button Pin Assignments, Schematic Signal Names, and Functions

Board Reference	Schematic Signal Name	Description	I/O Standard	Arria 10 GX Pin Number
PB0	BUTTON0		1.5-V	PIN_AJ13
PB1	BUTTON1	High Logic Level when the button	1.5-V	PIN_AE13
PB2	BUTTON2	s not pressed	1.5-V	PIN_AV16
PB3	BUTTON3		1.5-V	PIN_AR9

■ User-Defined Slide Switch

There are two slide switches on the FPGA board to provide additional FPGA input control. When a slide switch is in the DOWN position or the UPPER position, it provides a low logic level or a high logic level to the Arria 10 GX FPGA, respectively, as shown in **Figure 2-6**.

Table 2-4 lists the signal names and their corresponding Arria 10 GX device pin numbers.

Table 2-4 Slide Switch Pin Assignments, Schematic Signal Names, and Functions

Board Reference	Schematic Signal Name	Description	I/O Standard	Arria 10 GX Pin Number
SW0	SW0	High logic level when SW in the	1.5-V	PIN_AY28
SW1	SW1	UPPER position.	1.5-V	PIN_AM27

■ User-Defined LEDs

The FPGA board consists of 8 user-controllable LEDs to allow status and debugging signals to be driven to the LEDs from the designs loaded into the Arria 10 GX device. Each LED is driven directly by the Arria 10 GX FPGA. The LED is turned on or off when the associated pins are driven to a low or high logic level, respectively. A list of the pin names on the FPGA that are connected to the LEDs is given in **Table 2-5**.

Table 2-5 User LEDs Pin Assignments, Schematic Signal Names, and Functions

Board	Schematic	Description	I/O	Arria 10 GX Pin
Reference	Signal Name	Description	Standard	Number
D4	LED0		1.8-V	PIN_T11
D3	LED1		1.8-V	PIN_R11
D2	LED2	Driving a logic 0 on the I/O	1.8-V	PIN_N15
D1	LED3	port turns the LED ON.	1.8-V	PIN_M15
D9-1	LED_BRACKET0	Driving a logic 1 on the I/O	1.8-V	PIN_AF10
D9-3	LED_BRACKET1	port turns the LED OFF.	1.8-V	PIN_AF9
D9-5	LED_BRACKET2		1.8-V	PIN_Y13
D9-7	LED_BRACKET3		1.8-V	PIN_W11

■ 7-Segment Displays

The FPGA board has two 7-segment displays. As indicated in the schematic in **Figure 2-7**, the seven segments are connected to pins of the Arria 10 GX FPGA. Applying a low or high logic level to a segment will turn it on or turn it off, respectively.

Each segment in a display is identified by an index listed from 0 to 6 with the positions given in **Figure 2-8**. In addition, the decimal point is identified as DP. **Table 2-6** shows the mapping of the FPGA pin assignments to the 7-segment displays.

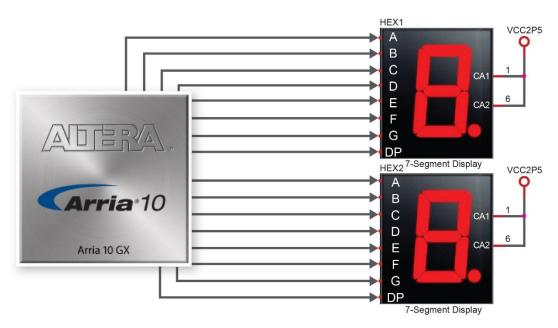


Figure 2-7 Connection between 7-segment displays and Arria 10 GX FPGA

Figure 2-8 Position and index of each segment in a 7-segment display

Table 2-6 User LEDs Pin Assignments, Schematic Signal Names, and Functions

Board Reference	Schematic Signal Name	Description	I/O Standard	Arria 10 GX Pin Number
HEX1	HEX1_D0		1.5-V	PIN_AM33
HEX1	HEX1_D1		1.5-V	PIN_AN33
HEX1	HEX1_D2		1.5-V	PIN_AM32
HEX1	HEX1_D3	User-Defined 7-Segment Display.	1.5-V	PIN_AN32
HEX1	HEX1_D4	Driving logic 0 on the I/O port turns	1.5-V	PIN_AN31
HEX1	HEX1_D5	the 7-segment signal ON. Driving logic 1 on the I/O port turns the	1.5-V	PIN_AP31
HEX1	HEX1_D6	7-segment signal OFF.	1.5-V	PIN_AK32
HEX1	HEX1_DP	7 Segment Signal Of 1.	1.5-V	PIN_AK31
HEX0	HEX0_D0		1.5-V	PIN_AV10
HEX0	HEX0_D1		1.5-V	PIN_AV11
HEX0	HEX0_D2	17	1.5-V	PIN_AW8

HEX0	HEX0_D3	1.5-V	PIN_A
HEX0	HEX0_D4	1.5-V	PIN_A
HEX0	HEX0_D5	1.5-V	PIN_B
HEX0	HEX0_D6	1.5-V	PIN_AW
HEX0	HEX0_DP	1.5-V	PIN_A\

2.4 Temperature Sensor and Fan Control

The FPGA board is equipped with a temperature sensor, MAX1619, which provides temperature sensing and over-temperature alert. These functions are accomplished by connecting the temperature sensor to the internal temperature sensing diode of the Arria 10 GX device. The temperature status and alarm threshold registers of the temperature sensor can be programmed by a two-wire SMBus, which is connected to the Arria 10 GX FPGA. In addition, the 7-bit POR slave address for this sensor is set to '0011000b'. Figure 2-9 shows the connection between the temperature sensor and the Arria 10 GX FPGA.

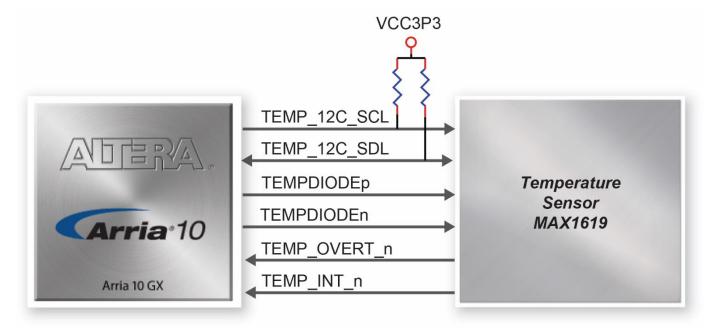


Figure 2-9 Connections between the temperature sensor and the Arria 10 GX FPGA

An optional 3-pin +12V fan located on J15 of the FPGA board is intended to reduce the temperature of the FPGA. The board is equipped with a Fan-Speed regulator and monitor, MAX6650, through an I2C interface, Users regulate and monitor the speed of fan depending on the measured system temperature.

Figure2-10showstheconnectionbetweenthe Fan-Speed Regulator and Monitor and the Arria 10 GX FPGA.

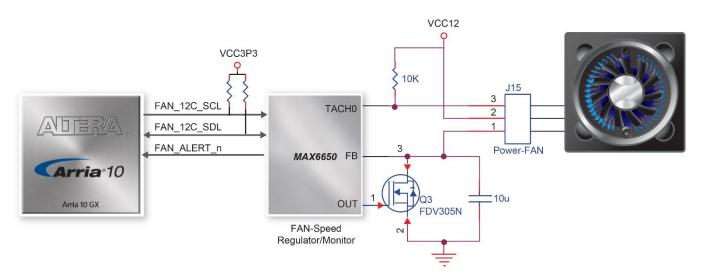


Figure 2-10 Connections between the Fan-Speed Regulator/ Monitor and the Arria 10 GX FPGA

The pin assignments for the associated interface are listed in **Table 2-7**.

Table 2-1Temperature Sensor and Fan Speed Control Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Arria 10 GX Pin Number
TEMPDIODEp	Positive pin of temperature diode in Arria 10	-	PIN_N21
TEMPDIODEn	Negative pin of temperature diode in Arria 10	-	PIN_P21
TEMP_I2C_SCL	SMBus clock	1.5-V	PIN_AU12
TEMP_I2C_SDA	SMBus data	1.5-V	PIN_AV12
TEMP_OVERT_n	SMBus alert (interrupt)	1.5-V	PIN_AW11

TEMP_INT_n	SMBus alert (interrupt)	1.5-V	PIN_AY12
FAN_I2C_SCL	2-Wire Serial Clock	1.5-V	PIN_AJ33
FAN_I2C_SDA	2-Wire Serial-Data	1.5-V	PIN_AK33
FAN_ALERT_n	Active-low AL ERT input	1.5-V	PIN_AL32

2.5 Power Monitor

The DE5a-Net has implemented a power monitor chip to monitor the board input power voltage and current. **Figure 2-11** shows the connection between the power monitor chip and the Arria 10 GX FPGA. The power monitor chip monitors both shunt voltage drops and board input power voltage allows user to monitor the total board power consumption. Programmable calibration value, conversion times, and averaging, combined with an internal multiplier, enable direct readouts of current in amperes and power in watts. Table 2-8 shows the pin assignment of power monitor I2C bus.

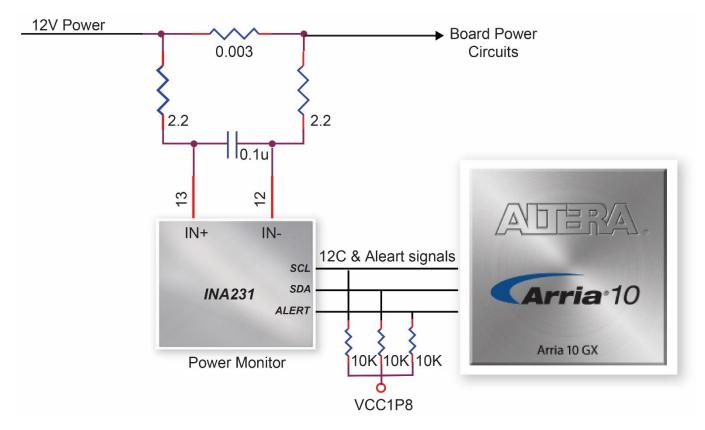


Figure 2-11 Connections between the Power Monitor chip and the Arria 10 GX FPGA

Table 2-8Pin Assignment of Power Monitor I2C bus

Schematic Signal Name	Description	I/O Standard	Arria 10 GX Pin Number
POWER_MONITOR_I2C_SCL	Power Monitor SCL	1.8V	PIN_AT26
POWER_MONITOR_I2C_SDA	Power Monitor SDA	1.8V	PIN_AP25
POWER_MONITOR_ALERT	Power Monitor ALERT	1.8V	PIN_BD23

2.6 Clock Circuit

The development board includes one 50 MHz and two programmable clock generators. **Figure 2-12** shows the default frequencies of on-board all external clocks going to the Arria 10 GX FPGA.

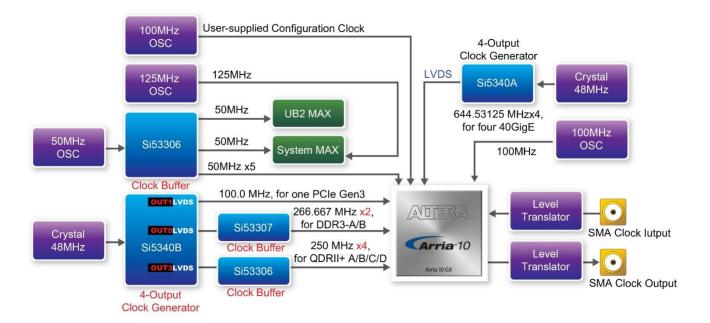


Figure 2-12 Clock circuit of the FPGA Board

A clock buffer is used to duplicate the 50 MHz oscillator, so there are five 50MHz clocks fed into different five FPGA banks. The two programming clock generators are low-jitter oscillators which are used to provide special and high quality clock signals for high-speed transceivers and high bandwidth memory. Through I2C serial interface, the clock generator controllers in the Arria 10 GX FPGA can be used to program the Si5340A and Si5340B to generate 40G Ethernet QSFP+, PCIe and high bandwidth memory reference clocks respectively. Two SMA connectors provide external clock input and clock output respectively.

Table2-9 lists the clock source, signal names, default frequency and their corresponding Arria 10 GX device pin numbers.

Table 2-9 Clock Source, Signal Name, Default Frequency, Pin Assignments and Functions

Source	Schematic	Default	I/O	Arria 10 GX	Application
Source	Signal Name	Frequency	Standard	Pin Number	Application
	CLK_50_B2J		1.8V	PIN_W36	
	CLK_50_B2L		1.8V	PIN_H32	
Y1	CLK_50_B3D	50.0 MHz	1.8V	PIN_AN7	
	CLK_50_B3F		1.8V	PIN_G12	
	CLK_50_B3H		1.8V	PIN_D21	
Y7	CLK_100_B3D	100.0MHz	1.8V	PIN_AH11	
J2	SMA_CLKIN	User Defined	1.8V	PIN_AC32	External Clock Input
J4	SMA_CLKOUT	User Defined	1.8V	PIN_AA36	Clock Output
	QSFPA_REFCLK_p	644.53125 MHz	LVDS	PIN_AH5	40G QSFP+ A port
114.5	QSFPB_REFCLK_p	644.53125 MHz	LVDS	PIN_AD5	40G QSFP+ B port
U15	QSFPC_REFCLK_p	EFCLK_p 644.53125 MHz	LVDS	PIN_Y5	40G QSFP+ C port
	QSFPD_REFCLK_p	644.53125 MHz	LVDS	PIN_T5	40G QSFP+ D port
	DDR3A_REFCLK_p	<pre>4</pre>	PIN_AV33	DDR3 reference clock for A port	
1144	DDR3B REFCLK p	266.667 MHz	LVDS	PIN_AP14	DDR3 reference clock for B port
U44		250 MHz	LVDS	PIN_L9	QDRII+ reference clock for A port
	QDRIIB_REFCLK_p	250 MHz	LVDS	PIN_N18	QDRII+ reference clock for B port

l		QDRIIC REFCLK p	250 MHz	LVDS	PIN G24	QDRII+ reference
		QUNIIO_NEFOLK_P	250 IVITZ	LVDS	FIIN_G24	clock for C port
		QDRIID REFCLK p	250 MHz	LVDS	PIN M34	QDRII+ reference
	QDNIID_NEFOLK	QDNIID_NEFOEK_P	250 101112	LVDS	FIIN_IVI34	clock for D port
		OB PCIE REFCLK p	100 MHz	LVDS	PIN AK40	PCIe reference
l		OB_PGIE_NEPGER_P	100 IVIDZ	LVDS	FIIN_AN40	clock

Table 2-10lists the programmable oscillator control pins, signal names, I/O standard and their corresponding Arria 10 GX device pin numbers.

Table 2-10 Programmable oscillator control pin, Signal Name, I/O standard, Pin Assignments and Descriptions

Programmable	Schematic	I/O	Arria 10 GX	Doggrintion
Oscillator	Signal Name	Standard	Pin Number	Description
Si5340A	Si5340A_I2C_SCL	1.8-V	PIN_AJ11	I2C bus, connected
(U15)	Si5340A_I2C_SDA	1.8-V	PIN_AN8	with Si5340A
	Si5340A_RST	1.8-V	PIN_AN6	Si5340A reset signal
Si5340A	Si5340A_INTR	1.8-V	PIN_AM6	Si5340A interrupt
(U15)				signal
(013)	Si5340A OE n	1.8-V	PIN AJ10	Si5340A output
	313340A_OL_11	1.0-V	1 1111_7010	enable signal
	Si5340B_I2C_SCL	1.8-V	PIN_G37	I2C bus, connected
	Si5340B_I2C_SDA	1.8-V	PIN_H31	with Si5340B
Si5340B	Si5340B_RST	1.8-V	PIN_G38	Si5340B reset signal
(U44)	Si5340B_INTR	1.8-V	PIN G32	Si5340B interrupt
(044)	313340B_INTH	1.0-1	FIIN_G32	signal
	Si5340B OE n	1.5-V	PIN AL31	Si5340B output
	313340B_OL_11	1.5-4	I IIV_ALST	enable signal

2.7 FLASH Memory

The development board has two 1Gb CFI-compatible synchronous flash devices for non-volatile storage of FPGA configuration data, user application data, and user code space.

Each interface has a 16-bit data bus and the two devices combined allow for FPP x32 configuration. This device is part of the shared flash and MAX (FM) bus, which connects to the flash memory and MAX V CPLD (5M2210) System Controller. **Figure 2-13** shows the connections between the Flash, MAX and Arria 10 GX FPGA.

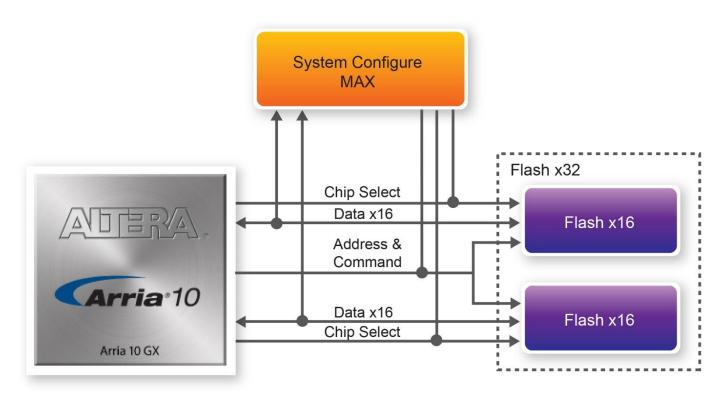


Figure 2-13 Connection between the Flash, Max and Arria 10 GX FPGA

Table 2-11 lists the flash pin assignments, signal names, and functions.

Table 2-11 Flash Memory Pin Assignments, Schematic Signal Names, and Functions

Schematic Signal Name	Description	I/O Standard	Arria 10 GX Pin Number
FLASH_A1	Address bus	1.8-V	PIN_H26
FLASH_A2	Address bus	1.8-V	PIN_J18
FLASH_A3	Address bus	1.8-V	PIN_N17
FLASH_A4	Address bus	1.8-V	PIN_P15
FLASH_A5	Address bus	1.8-V	PIN_B18
FLASH_A6	Address bus	1.8-V	PIN_E18
FLASH_A7	Address bus	1.8-V	PIN_D18

FLASH_A8	Address bus	1.8-V	PIN_J10
FLASH_A9	Address bus	1.8-V	PIN_B17
FLASH_A10	Address bus	1.8-V	PIN_J11
FLASH_A11	Address bus	1.8-V	PIN_H8
FLASH_A12	Address bus	1.8-V	PIN_A17
FLASH_A13	Address bus	1.8-V	PIN_G8
FLASH_A14	Address bus	1.8-V	PIN_G9
FLASH_A15	Address bus	1.8-V	PIN_A16
FLASH_A16	Address bus	1.8-V	PIN_K11
FLASH_A17	Address bus	1.8-V	PIN_B15
FLASH_A18	Address bus	1.8-V	PIN_G7
FLASH_A19	Address bus	1.8-V	PIN_F6
FLASH_A20	Address bus	1.8-V	PIN_A15
FLASH_A21	Address bus	1.8-V	PIN_A14
FLASH_A22	Address bus	1.8-V	PIN_H6
FLASH_A23	Address bus	1.8-V	PIN_T12
FLASH_A24	Address bus	1.8-V	PIN_U12
FLASH_A25	Address bus	1.8-V	PIN_F7
FLASH_A26	Address bus	1.8-V	PIN_B14
FLASH_D0	Address bus	1.8-V	PIN_B35
FLASH_D1	Data bus	1.8-V	PIN_A35
FLASH_D2	Data bus	1.8-V	PIN_C35
FLASH_D3	Data bus	1.8-V	PIN_C33
FLASH_D4	Data bus	1.8-V	PIN_C32
FLASH_D5	Data bus	1.8-V	PIN_A32
FLASH_D6	Data bus	1.8-V	PIN_C26
FLASH_D7	Data bus	1.8-V	PIN_B24
FLASH_D8	Data bus	1.8-V	PIN_C36
FLASH_D9	Data bus	1.8-V	PIN_B34
FLASH_D10	Data bus	1.8-V	PIN_A34
FLASH_D11	Data bus	1.8-V	PIN_B33
FLASH_D12	Data bus	1.8-V	PIN_B32
FLASH_D13	Data bus	1.8-V	PIN_A31
FLASH_D14	Data bus	1.8-V	PIN_E24
FLASH_D15	Data bus	1.8-V	PIN_C25
FLASH_D16	Data bus	1.8-V	PIN_K33