

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SMT POWER INDUCTORS

Toroid - HCCI-80 Series

Height: 12.7mm Max

Footprint: 31.0mm x 25.4mm Max

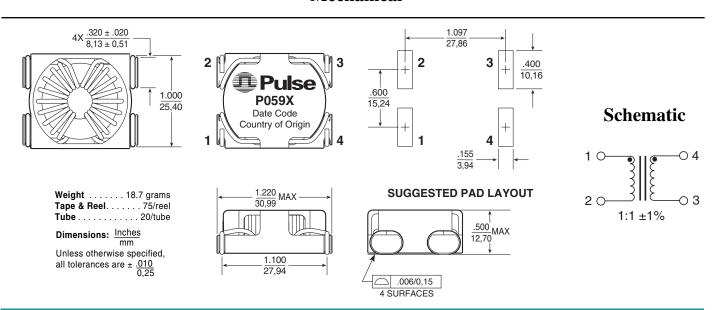
Current Rating: up to 38A

Inductance Range: 1.1μH to 18.1μH

Electrical Specifications @ 25°C — Operating Temperature -40°C to +130°C 6										
Pulse ^{4,5} Part Number	Inductance @ Irated (µH TYP)	Irated (A)	DCF TYP	l (mΩ) MAX	Inductance @ 0Apc (µH ±15%)	Reference ET (Volt-µsec)	Flux Density Factor (K1)	Core Loss Factor (K2)	Temp. Rise Factor (K3)	Connection
P0599NL	1.1	38	1.1	1.3	2.1	4.20	0.62	1.50E-09	33.8	Parallel
P0598NL	1.6	34	1.4	1.6	3.9	4.20	0.48	1.50E-09	33.8	Parallel
P0597NL	2.45	27	2.2	2.5	5.7	6.00	0.39	1.50E-09	33.8	Parallel
P0596NL	3.2	24	3.0	3.5	8.0	4.20	0.33	1.50E-09	33.8	Parallel
P0599NL	4.3	19	4.4	5.1	8.4	8.40	0.31	1.50E-09	33.8	Series
P0595NL	4.52	19	4.2	4.8	10.5	9.00	0.29	1.50E-09	33.8	Parallel
P0598NL	6.4	17	5.6	6.4	15.6	8.40	0.24	1.50E-09	33.8	Series
P0597NL	9.8	13.5	8.8	10.1	22.8	12.00	0.20	1.50E-09	33.8	Series
P0596NL	12.8	12	12.0	13.8	32.0	8.40	0.17	1.50E-09	33.8	Series
P0595NL	18.1	9.5	16.8	19.3	42.0	18.00	0.14	1.50E-09	33.8	Series

NOTES

- Temperature rise is 55°C in typical buck or boost circuits operating at 300kHz with the rated ldc current and reference ET applied to the inductor.
- Total loss in the inductor is 1.8W for 55°C temperature rise above ambient
- 3. In high volt-time applications, additional heating in the component can occur due to core losses in the inductor which may necessitate derating the current in order to limit the temperature rise of the component. In order to determine the approximate total losses (or temperature rise) for a given application, both copper and core losses should be taken into account.


Estimated Temperature Rise:

Trise = K3 * (Coreloss(W) + Copperloss(W)).833 (C)

 $\label{eq:copperLoss} $$ CopperLoss = Irms^2 * DCR_Typical (m\Omega) / 1000 $$ CoreLoss = K2 * (Freq_kHz)^{1.26 *} (\Delta B)^{2.11} $$ \Delta B = K1 * Volt-usec * 100 $$$

- 4. Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e. P0595NL becomes P0595NLT). Pulse complies to industry standard tape and reel specification EIA481.
- 5. The "NL" suffix indicates an RoHS-compliant part number. Non-NL suffixed parts are not necessarily RoHS compliant, but are electrically and mechanically equivalent to NL versions. If a part number does not have the "NL" suffix, but an RoHS compliant version is required, please contact Pulse for availability.
- The temperature of the component (ambient plus temperature rise) must be within the stated operating temperature range.

Mechanical

