

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

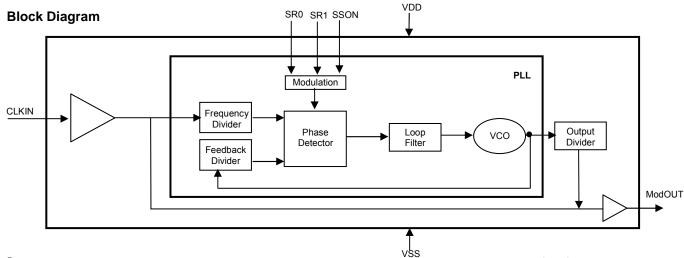
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Notebook LCD Panel EMI Reduction IC

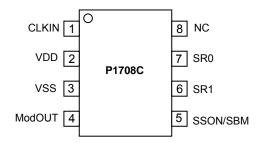
Features

- FCC approved method of EMI attenuation.
- Generates a low EMI spread spectrum clock of the input frequency.
- Optimized for frequency range from 50 to 110MHz.
- Internal loop filter minimizes external components and board space.
- · Four selectable spread ranges.
- Low inherent cycle-to-cycle jitter.
- 3.3V operating voltage range.
- TTL or CMOS compatible inputs and outputs.
- CMOS design.
 - o 8.46mA @ 3.3V, 54MHz
 - o 9.79mA @ 3.3V, 65MHz
 - o 12.06mA @ 3.3V, 81MHz
 - o 16.51mA @ 3.3V, 108MHz
- Supports notebook VGA and other LCD timing controller applications.
- Pinout compatible to ICS MK1708 and Cypress CY25560.
- SSON / SBM pin for Spread Spectrum On/Off and Standby Mode controls.
- Available in 8-pin SOIC and TSSOP.

Product Description


The P1708C is a versatile spread spectrum frequency modulator designed specifically for input clock frequencies. The P1708C reduces electromagnetic interference (EMI) at the clock source, allowing system wide reduction of EMI of down stream clock and data dependent signals. The P1708C allows significant system cost savings by reducing the number of circuit board layers, ferrite beads, shielding, and other passive components that are traditionally required to pass EMI regulations.

The P1708C modulates the output of a single PLL in order to "spread" the bandwidth of a synthesized clock, and more importantly, decreases the peak amplitudes of its harmonics. This result in significantly lower system EMI compared to the typical narrow band signal produced by oscillators and most frequency generators. Lowering EMI by increasing a signal's bandwidth is called 'spread spectrum clock generation.'


The P1708C uses the most efficient and optimized modulation profile approved by the FCC and is implemented in a proprietary all digital method.

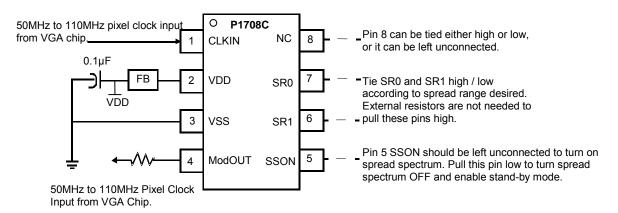
Applications

The P1708C is targeted towards notebook LCD displays, and other displays using an LVDS interface, PC peripheral devices, and embedded systems.

Pin Configuration

Pin Description

Pin#	Pin Name	Description	
FIII#	FIII Name	Туре	Description
1	CLKIN	ı	Connect to externally generated clock signal. To put the part into standby mode, disable the input clock signal to this pin and pull SSON / SBM (pin 5) low. Refer to Standby Mode Selection Table.
2	VDD	Р	Connect to +3.3V.
3	VSS	Р	Ground Connection. Connect to system ground.
4	ModOUT	0	Spread spectrum clock output.
5	SSON / SBM	I	Spread Spectrum On/Off and standby mode control. Refer to <i>Standby Mode Selection</i> Table. This pin has an internal pull-up resistor.
6	SR1	ı	Digital logic input used to select Spreading Range. Refer to <i>Spread Spectrum Selection</i> Table. This pin has an internal pull-up resistor.
7	SR0	I	Digital logic input used to select Spreading Range. Refer to Spread Spectrum Selection Table. This pin has an internal pull-up resistor.
8	NC	-	No connect.


Standby Mode Selection

otaliaby inicae colocion								
CLKIN	SSON / SBM	Spread Spectrum	ModOUT	PLL	Mode			
Disabled	0	N/A	Disabled	Disabled	Standby			
Disabled	1	N/A	Disabled	Free Running	Free Running			
Enabled	0	Off	Reference	Disabled	Buffer out			
Enabled	1	On	Normal	Normal	Normal			

Spread Range Selection

SR1	SR0	Spreading Range	Modulation Rate
0	0 0 ±1.00%		(F _{IN} /40) * 62.49KHz
0	1	±2.00%	(F _{IN} /40) * 62.49KHz
1	0	±0.25%	(F _{IN} /40) * 62.49KHz
1	1	±0.75%	(F _{IN} /40) * 62.49KHz

Schematic for Notebook VGA Application

Note: To set the P1708C to standby mode, disable the input clock (pin 1 CLKIN) and pull SSON (pin 5) low. Refer to Standby Mode Selection Table.

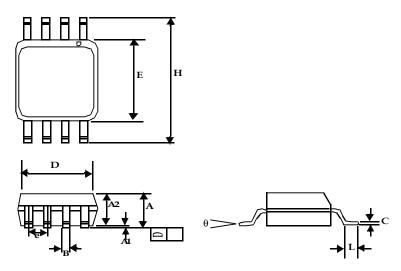
Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit					
VDD, V _{IN}	Voltage on any pin with respect to Ground	-0.5 to +7.0	V					
T _{STG}	Storage temperature	-65 to +125	$^{\circ}$					
Ts	Max. Soldering Temperature (10 sec)	260	${\mathbb C}$					
TJ	Junction Temperature	150	${\mathbb C}$					
T_DV	T _{DV} Static Discharge Voltage (As per JEDEC STD22- A114-B) 2 KV							
	Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.							

Operating Conditions

Parameter	Description	Min	Max	Unit
VDD	Supply Voltage	2.7	3.7	V
T _A	Operating Temperature (Ambient Temperature)	-40	+85	C
C_L	Load Capacitance		15	pF
C_{IN}	Input Capacitance		7	pF

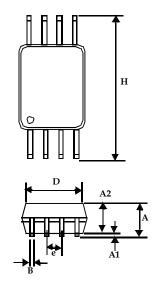
DC Electrical Characteristics

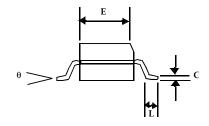

Symbol	Parameter	Min	Тур	Max	Unit
V _{IL}	Input low voltage	GND-0.3		0.8	V
V _{IH}	Input high voltage	2.0		V _{DD} +0.3	V
I _{IL}	Input low current (pull-up resistors on inputs SR0, SR1 and SSON/SBM)			-35	μΑ
I _{IH}	Input high current			35	μΑ
I _{XOL}	X _{OUT} output low current @ 0.4V, V _{DD} = 3.3V		3		mA
I _{XOH}	X _{OUT} output high current @ 2.5V, V _{DD} = 3.3V		3		mA
V _{OL}	Output low voltage V _{DD} = 3.3V, I _{OL} = 20mA			0.4	V
V _{OH}	Output high voltage V _{DD} = 3.3V, I _{OH} = 20mA	2.5			V
I _{CC}	Dynamic supply current normal mode 3.3V and 10pF loading	7.90	9.79	17.53 f _{IN} -max	mA
I_{DD}	Static supply current standby mode		0.6		mA
V_{DD}	Operating voltage	2.7	3.3	3.7	V
ton	Power up time (first locked clock cycle after power up)		0.18		mS
Z _{OUT}	Clock output impedance		50		Ω

AC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{IN}	Input frequency	50		110	MHz
f _{OUT}	Output frequency	50		110	MHz
t _{LH} 1	Output rise time Measured at 0.8V to 2.0V	0.7	0.9	1.1	ns
t _H ¹	Output fall time Measured at 0.8V to 2.0V	0.6	0.8	1.0	ns
t√c	Jitter (cycle-to-cycle)			360	ps
t _D	Output duty cycle	45	50	55	%

Package Information


8-Pin SOIC Package



	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
Α	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
Е	0.154	BSC	3.91 BSC		
е	0.050 BSC		1.27 BSC		
Н	0.236 BSC		6.00 BSC		
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

Note: Controlling dimensions are millimeters. SOIC: 0.074 grams unit weight.

8-Pin TSSOP

	Dimensions				
Symbol	Inc	hes	Millimeters		
	Min	Max	Min	Max	
Α		0.043		1.10	
A1	0.002	0.006	0.05	0.15	
A2	0.033	0.037	0.85	0.95	
В	0.008	0.012	0.19	0.30	
С	0.004	0.008	0.09	0.20	
D	0.114	0.122	2.90	3.10	
E	0.169	0.177	4.30	4.50	
е	0.026 BSC		0.65 BSC		
Н	0.252 BSC		6.40	BSC	
L	0.020	0.028	0.50	0.70	
θ	0°	8°	0°	8°	

Ordering Codes

Part number	Marking	Package Type	Temperature
P1708CF-08SR	AAY	8-Pin SOIC, Tape and Reel, Pb Free	0℃ to +70℃
P1708CF-08TR	AAY	8-Pin TSSOP, Tape and Reel, Pb Free	0℃ to +70℃

A "microdot" placed at the end of last row of marking or just below the last row toward the center of package indicates Pb-free

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303-675-2175 or 800-344-3860 Toll Free

USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free

USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your

local Sales Representative