

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

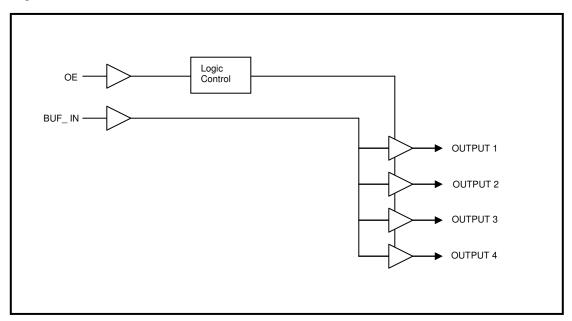
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

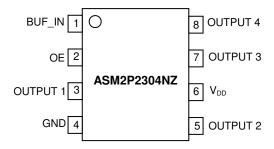
Four Output PCI-X and General Purpose Buffer

Features

- One input to four Output Buffer/Driver
- General-purpose or PCI-X clock buffer
- Buffers all frequencies from DC to 140MHz
- Output-to-output skew less than 100pS
- Available in 8-pin TSSOP and SOIC Packages
- 3.3V operation


Functional Description

The ASM2P2304NZ is a low-cost buffer designed to distribute high-speed clocks for PCI-X and other applications. The device operates at 3.3V and outputs can run up to 140MHz.


Table 1. Function Table.

Inputs	Outputs	
BUF_IN OE		Output [1:4]
L	L	L
H	L	L
Ĺ	Н	L
Н	Н	Н

Block Diagram

Pin Configuration

Pin Description

= 0 0 0 p 0.0			
Pin #	Pin Name	Туре	Description
1	BUF_IN ¹	I	Input clock. 5V Tolerant Input.
2	OE	I	Input pin for Output Enable, active HIGH. Connect to V_{DD} .
3	Output 1 ²	0	Output 1.
4	GND	Р	Ground.
5	Output 2 ²	0	Output 2.
6	V_{DD}	Р	3.3V Voltage Supply.
7	Output 3 ²	0	Output 3.
8	Output 4 ²	0	Output 4.

Weak pull down on input.
 Weak pull down on all outputs.

ASM2P2304NZ

Absolute Maximum Ratings

Parameter	Description	Min	Max
Supply Voltage to Ground Potential	-0.5	7	V
DC Input Voltage (Except BUF_IN)	-0.5	V _{DD} + 0.5	٧
DC Input Voltage (BUF_IN)	-0.5	7	V
Storage Temperature	-65	+150	°C
Max. Soldering Temperature (10 sec)		260	°C
Junction Temperature		150	°C
Static Discharge Voltage (As per JEDEC STD22- A114-B)		2000	V

Note: These are stress ratings only and functional usage is not implied. Exposure to absolute maximum ratings for prolonged periods can affect device reliability.

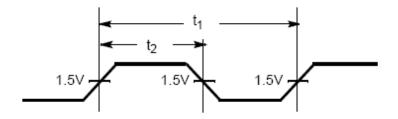
Operating Conditions

Parameter	Description	Min	Max	Unit
V_{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance		25	pF
C _{IN}	Input Capacitance		7	pF
BUF_IN, OUTPUT [1:4]	Operating Frequency	DC	140	MHz
t _{PU}	Power-up time for all V _{DD} 's to reach minimum specified Voltage (Power ramps must be monotonic)	0.05	50	mS

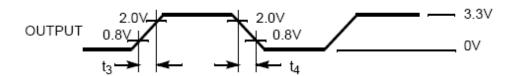
Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
V _{IL}	Input LOW Voltage ¹			0.8	٧
V _{IH}	Input HIGH Voltage ¹		2.0		٧
I _{IL}	Input LOW Current	$V_{IN} = 0V$	-5	5	μΑ
Іін	Input HIGH Current	$V_{IN} = V_{DD}$	-5	12	μΑ
V	Output LOW Voltage ²	I _{OL} = 24mA		0.8	٧
V _{OL}	Output LOW Voltage	I _{OL} = 12mA		0.55	٧
V	Output HIGH Voltage ²	I _{OH} = -24mA	2.0		٧
V _{OH}	Output nigh voitage	I _{OH} = -12mA	2.4		V
I _{DD}	Supply Current	Unloaded outputs at 66.66MHz		25	mA

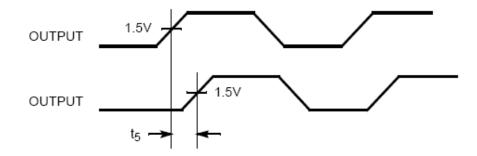
Switching Characteristics for Commercial and Industrial Temperature Devices³

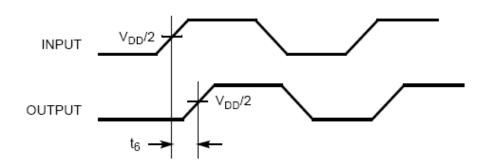

Parameter	Name	Description		Min	Тур	Max	Unit
t _D	Duty Cycle ² = $t_2 \div t_1$	Measured at 1.5V		40.0	50.0	60.0	%
t ₃	Rise Time ²	Measured between 0.8V and 2.0V				1.50	nS
t ₄	Fall Time ²	Measured be	Measured between 2.0V and 0.8V			1.50	nS
	0.44	All outputs equally	For Commercial parts			100	0
τ ₅	t₅ Output to Output Skew²		For Industrial parts			150	pS
t ₆	Propagation Delay, BUF_IN Rising Edge to OUTPUT Rising Edge ²	Measured at V _{DD} /2		2.5	3.5	5	nS

- Notes: 1. BUF_IN input has a threshold voltage of V_{DD}/2.
 2. Parameter is guaranteed by design and characterization. It is not 100% tested in production.
 3. All parameters specified with loaded outputs.

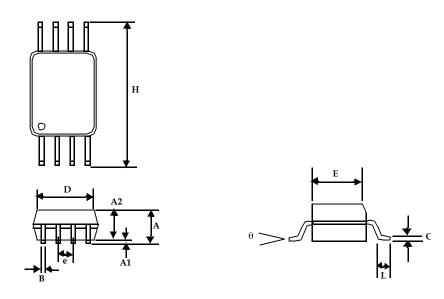

Notes: 1. BUF_IN input has a threshold voltage of V_{DD}/2.
2. Parameter is guaranteed by design and characterization. It is not 100% tested in production.

Switching Waveforms


Duty Cycle Timing

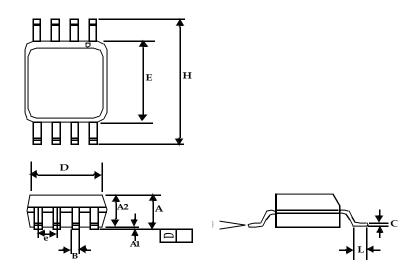

All Outputs Rise/Fall Time

Output-Output Skew



Input-Output Propagation Delay

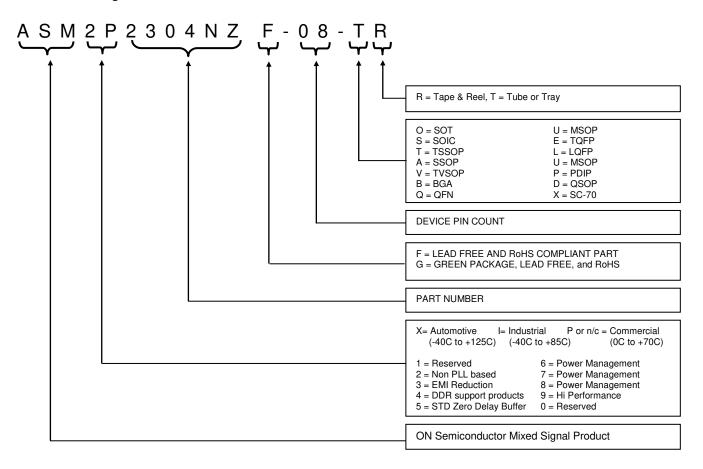
Package Information


8-lead Thin Shrunk Small Outline Package (4.40-MM Body)

		Dimensions				
Symbol	Inc	hes	Millimeters			
	Min	Max	Min	Max		
Α		0.043		1.10		
A1	0.002	0.006	0.05	0.15		
A2	0.033	0.037	0.85	0.95		
В	0.008	0.012	0.19	0.30		
С	0.004	0.008	0.09	0.20		
D	0.114	0.122	2.90	3.10		
E	0.169	0.177	4.30	4.50		
е	0.026	BSC	0.65	BSC		
Н	0.252 BSC		6.40	BSC		
L	0.020	0.028	0.50	0.70		
θ	0°	8°	0°	8°		

Package Information

8-lead (150-mil) SOIC Package



	Dimensions				
Symbol	Inches		Millimeters		
	Min	Max	Min	Max	
A1	0.004	0.010	0.10	0.25	
Α	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90 BSC		
Е	0.154	BSC	3.91	BSC	
е	0.050	BSC	1.27	BSC	
Н	0.236 BSC		6.00	BSC	
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	

Ordering Code

Part Number	Marking	Package Type	Temperature
P2P2304NZF-08ST	2P2304NZF	8-pin SOIC - Tube, Pb Free	Commercial
P2P2304NZF-08SR	2P2304NZF	8-pin SOIC - Tape and Reel, Pb Free	Commercial
ASM2I2304NZF-08-ST	2I2304NZF	8-pin SOIC - Tube, Pb Free	Industrial
ASM2I2304NZF-08-SR	2I2304NZF	8-pin SOIC - Tape and Reel, Pb Free	Industrial
ASM2P2304NZF-08-TT	2P2304NZF	8-pin TSSOP - Tube, Pb Free	Commercial
P2P2304NZF-08TR	2P2304NZF	8-pin TSSOP - Tape and Reel, Pb Free	Commercial
P2I2304NZF-08TT	2I2304NZF	8-pin TSSOP - Tube, Pb Free	Industrial
P2I2304NZF-08-TR	2I2304NZF	8-pin TSSOP - Tape and Reel, Pb Free	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

ASM2P2304NZ

Note: This product utilizes US Patent #6.646.463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003.

ON Semiconductor and unare registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. U.S Patent Pending; Timing-Safe and Active Bead are trademarks of PulseCore Semiconductor, a wholly owned subsidiary of ON Semiconductor. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163. Denver. Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free

USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your

local Sales Representative