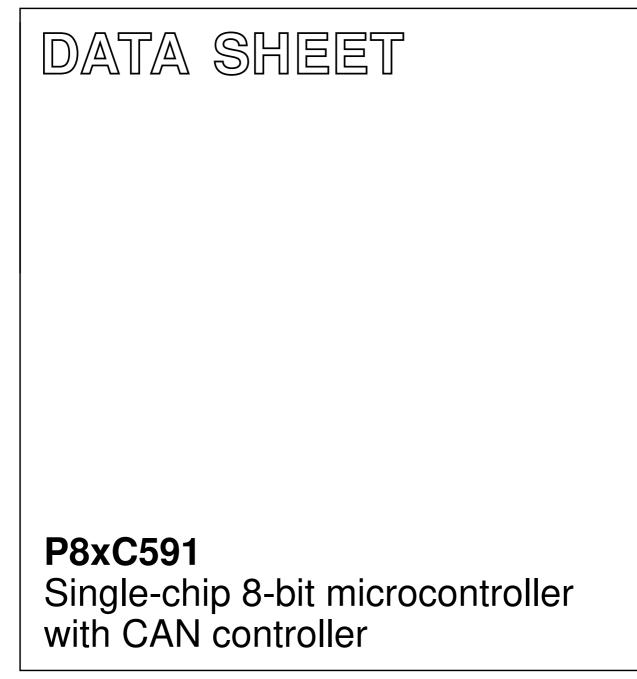
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Preliminary Specification File under Integrated Circuits, IC28 2000 Jul 26

CONTEN	TS	17	,
1	FEATURES	18	I
1.1	80C51 Related Features of the 8xC591	18.1	l
1.2	CAN Related Features of the 8xC591	18.2	l
2	GENERAL DESCRIPTION	18.3	
		19	
3		20	
4	BLOCK DIAGRAM	20.1	
5	FUNCTIONAL DIAGRAM	20.2	1
6	PINNING INFORMATION	20.3	
6.1	Pinning diagram	20.4 20.5	
6.2	Pin description		
7	MEMORY ORGANIZATION	21	l
7.1	Program Memory	21.1	
7.2	Addressing	21.2	
7.3	Expanded Data RAM addressing	21.3 21.4	
7.4	Dual DPTR		
8	I/O FACILITIES	22	
9	OSCILLATOR CHARACTERISTICS	22.1	
10	RESET	23	
11	LOW POWER MODES	24	
11.1	Stop Clock Mode	25	4
11.2	Idle Mode	25.1	-
11.3	Power-down Mode	26	l
12	CAN, CONTROLLER AREA NETWORK	26.1	I
12.1	Features of the PeliCAN controller	26.2	
12.2	PeliCAN structure	27	
12.3	Communication between PeliCAN controller and CPU	28	:
12.4	Register and Message Buffer description	28.1	l
12.5	CAN Registers	29	l
13	SERIAL I/O	30	l
14	SIO0 STANDARD SERIAL INTERFACE UART		
14.1	Multiprocessor Communications		
14.2	Serial Port Control Register		
14.3	Baud Rate Generation		
14.4	More about UART Modes		
14.5	Enhanced UART		

- 15 SIO1, I²C SERIAL IO
- 15.1 Modes of Operation
- 15.2 SIO1 Implementation and Operation
- 15.3 Software Examples of SIO1 Service Routines
- 16 TIMER 2
- 16.1 Features of Timer 2

17	WATCHDOG TIMER (T3)
18	PULSE WIDTH MODULATED OUTPUTS
18.1 18.2 18.3	Prescaler Frequency Control Register (PWMP) Pulse Width Register 0 (PWM0) Pulse Width Register 1 (PWM1)
19	PORT 1 OPERATION
20	ANALOG-TO-DIGITAL CONVERTER (ADC)
20.1 20.2 20.3 20.4 20.5	ADC features ADC functional description 10-Bit Analog-to-Digital Conversion 10-Bit ADC Resolution and Analog Supply Power Reduction Modes
21	INTERRUPTS
21.1 21.2 21.3 21.4	Interrupt Enable Registers Interrupt Enable and Priority Registers Interrupt priority Interrupt Vectors
22	INSTRUCTION SET
22.1	Addressing Modes
23	LIMITING VALUES
24	DC CHARACTERISTICS
25	AC CHARACTERISTICS
25.1	Timing symbol definitions
26	EPROM CHARACTERISTICS
26.1 26.2	Program verification Security bits
27	PACKAGE OUTLINES
28	SOLDERING
28.1	Plastic leaded-chip carriers/quad flat-packs

- 29 DEFINITIONS
- 30 LIFE SUPPORT APPLICATIONS

P8xC591

1 FEATURES

1.1 80C51 Related Features of the 8xC591

- Full static 80C51 Central Processing Unit available as OTP, ROM and ROMless
- 16 Kbytes internal Program Memory expandable externally to 64 Kbytes
- 512 bytes on-chip Data RAM expandable externally to 64 Kbytes
- Three 16-bit timers/counters T0, T1 (standard 80C51) and additional T2 (capture & compare)
- 10-bit ADC with 6 multiplexed analog inputs with fast 8-bit ADC option
- Two 8-bit resolution, Pulse Width Modulated outputs
- 32 I/O port pins in the standard 80C51 pinout
- I²C-bus serial I/O port with byte oriented master and slave functions
- On-chip Watchdog Timer T3
- Extended temperature range: -40 to +85°C
- Accelerated (prescaler 1:1) instruction cycle time 500 ns @ 12 MHz
- Operation voltage range: 5 V \pm 5%
- Security bits:
 - ROM version has 2 bits
 - OTP/EPROM version has 3 bits
- 32 bytes Encryption array
- 4 level priority interrupt, 15 interrupt sources
- Full-duplex enhanced UART with programmable Baudrate Generator
- Power Control Modes:
 - Clock can be stopped and resumed
 - Idle Mode
 - Power-down Mode
- ADC active in Idle Mode
- Second DPTR register
- ALE inhibit for EMI reduction
- Programmable I/O port pins (pseudo bi-directional, push-pull, high impedance, open drain)
- · Wake-up from Power-down by external interrupts
- Software reset bit (AUXR1.5)
- · Low active reset pin
- Power-on detect reset
- Once mode

1.2 CAN Related Features of the 8xC591

- CAN 2.0B active controller, supporting 11-bit Standard and 29-bit Extended indentifiers
- 1 Mbit/s CAN bus speed with 8 MHz clock achievable
- 64 byte receive FIFO (can capture sequential Data Frames from the *same* source as required by the Transport Layer of higher protocols such as DeviceNet, CANopen and OSEK)
- 13 byte transmit buffer
- Enhanced PeliCAN core (from the SJA1000 stand-alone CAN2.0B controller)

1.2.1 PELICAN FEATURES

- Four independently configurable Screeners (Acceptance Filters)
- Each Screener has two 32-bit specifies:
 - 32-bit Match and
 - 32-bit Mask
- 32-bits of Mask *per Screener* allows *unique* Group addressing per *Screener*
- Higher layer protocols especially supported in Standard CAN format with:
 - Up to four, 11-bit ID Screeners that also Screen the two (2) Data Bytes
 - i.e., Data Frames are Screened by the CAN ID and by Data Byte content
- Up to eight, 11-bit ID Screeners half of which *also* Screen the *first* Data Byte
- · All Screeners are changeable "on the fly"
- Listen Only Mode, Self Test Mode
- Error Code Capture, Arbitration Lost Capture, readable Error Counters

P8xC591

2 GENERAL DESCRIPTION

The P8xC591 is a single-chip 8-bit-high-performance microcontroller, with on-chip CAN-controller, derived from the 80C51 microcontroller family.

It uses the powerful 80C51 instruction set and includes the successful PeliCAN functionality of the SJA1000 CAN controller from Philips Semiconductors.

The fully static core provides extended power save provisions as the oscillator can be stopped and easily restarted without loss of data. The improved internal clock prescaler of 1:1 achieves a 500 ns instruction cycle time at 12 MHz external clock rate.

Figure 1 shows a Block Diagram of the P8xC591. The microcontroller is manufactured in an advanced CMOS process, and is designed for use in automotive and general industrial applications. In addition to the 80C51 standard features, the device provides a number of dedicated hardware functions for these applications.

Two versions of the P8xC591 will be offered:

- P83C591 (with ROM)
- P87C591 (with OTP)

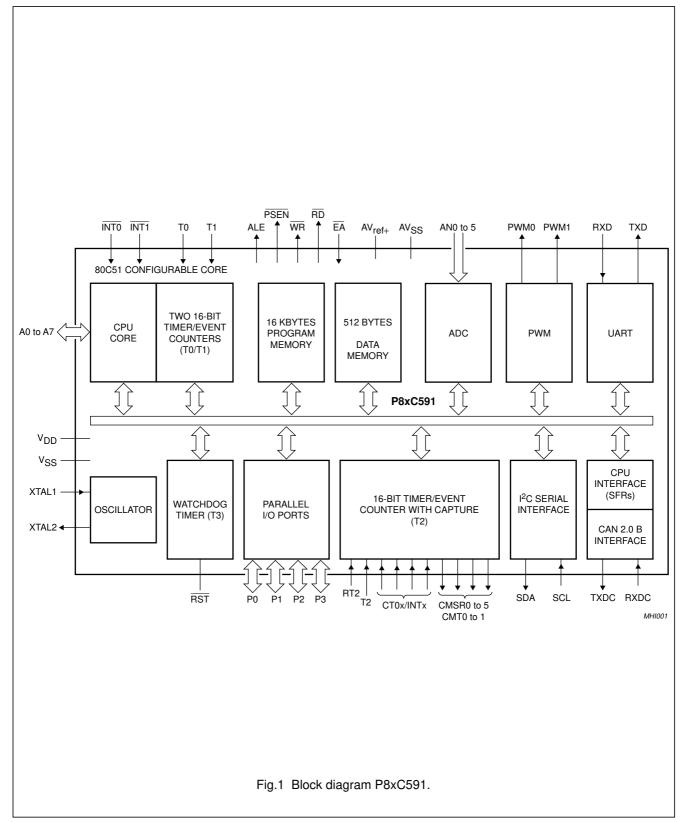
Hereafter these versions will be referred to as P8xC591.

3 ORDERING INFORMATION

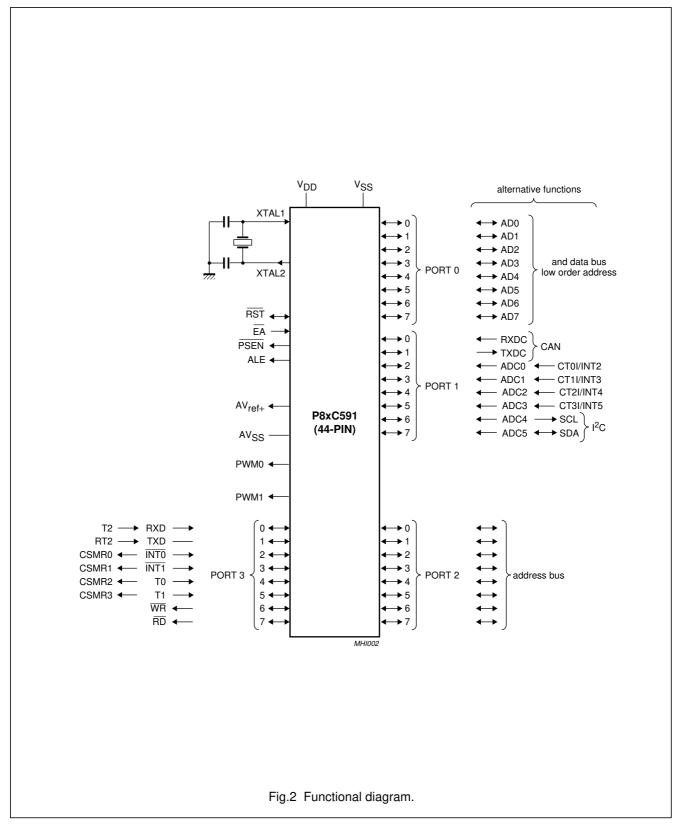
- The temperature range includes (max. $f_{CLK} = 12 \text{ MHz}$):
- -40 to +85 °C version, for general applications

The P8xC591 combines the functions of the P87C554 (microcontroller) and the SJA1000 (stand-alone CAN-controller) with the following enhanced features:

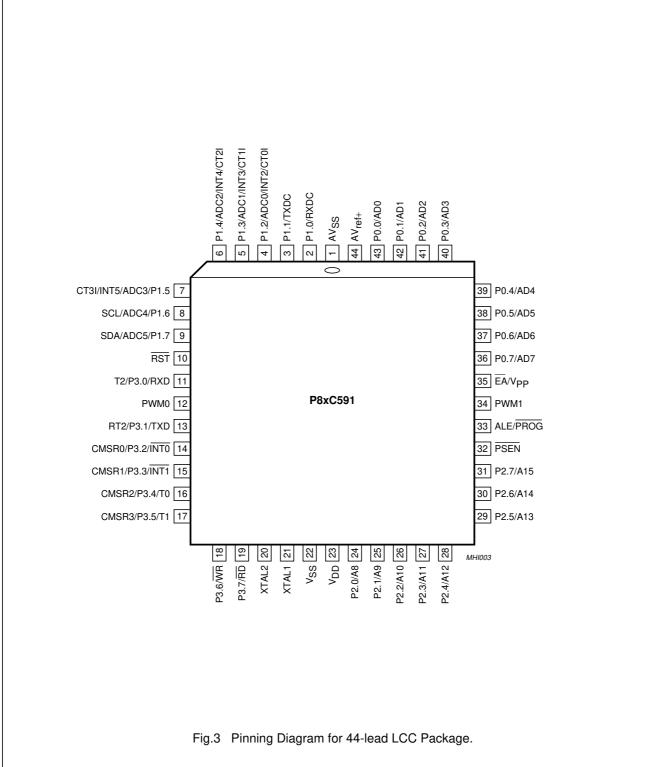
- Enhanced CAN receive interrupt (level sensitive)
- Extended acceptance filter
- Acceptance filter changeable "on the fly".


The main differences between P8xC591 and P87C554 are:

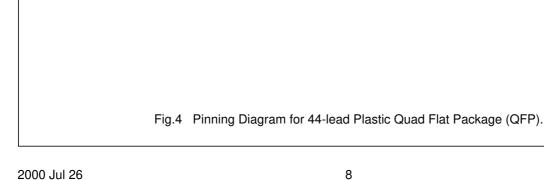
- CAN-controller on chip
- 6-input ADC
- · Low active Reset
- 44 leads.

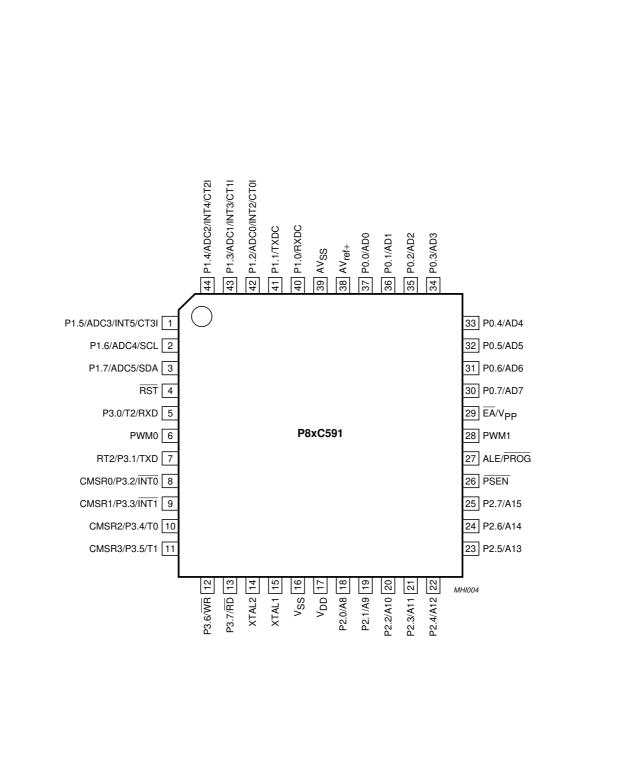

TYPE NUMBER		TEMPERATURE			
I TPE NUMBER	NAME	RANGE (°C)			
P83C591VFA	PLCC44	plastic leaded chip carrier; 44 leads	SOT187-2		
P87C591VFA	FL0044	plastic leaded chip carrier, 44 leads	301107-2	-40 to +85	
P83C591VFB	QFP44	plastic quad flat package; 44 leads (lead length 1.3 mm);	SOT307-2	-40 (0 +65	
P87C591VFB		body $10 \times 10 \times 1.75 \text{ mm}$	301307-2		

P8xC591


4 BLOCK DIAGRAM

5 FUNCTIONAL DIAGRAM


6 6.1



PINNING INFORMATION

Pinning diagram

Single-chip 8-bit microcontroller with CAN controller

Т

P8xC591

٦

6.2 Pin description

Г

	Р	IN	DESCRIPTION						
SYMBOL	QFP44	PLCC44	DESCRIPTION						
RST	4	10	Reset: A Input to reset the P8xC591. It also provides a reset pulse as output when Timer T3 overflows.						
P3.0to P3.7			Port 3 (P3.0 to P3.7) : 8-bit programmable I/O port lines; Port 3 can sink/source 4 LSTTL inputs.						
			Port 3 pins serve alternate functions as follows:						
P3.0/RXD	5	11	RXD : Serial input port for UART; T2: T2 event input						
P3.1/TXD	7	13	TXD : Serial output port for UART; RT2: T2 timer reset signal. Rising edge triggered.						
P3.2/INT0/CMSR0	8	14	INTO : External interrupt input 0; CMSR0: Compare and Set/Reset output for Timer T2.						
P3.3/INT1/ CMSR1	9	15	INT1 : External interrupt input 1; CMSR1: Compare and Set/Reset output for Timer T2.						
P3.4/T0/CMSR2	10	16	T0 : Timer 0 external interrupt input; CMSR2: Compare and Set/Reset output for Timer T2.						
P3.5/T1/CMSR3	11	17	T1 : Timer 1 external interrupt input; CMSR3: Compare and Set/Reset output for Timer T2.						
P3.6/WR	12	18	WR: External Data Memory Write strobe;						
P3.7/RD	13	19	RD: External Data Memory Read strobe.						
			During reset, Port 3 will be asynchronously driven resistive HIGH.						
			Port 3 has four modes selected on a per bit basis by writing to the P3M1 and P3M2 registers as follows:						
			P3M1.x P3M2.x Mode Description						
			0 0 Pseudo-bidirectional (standard c51 configuration default) 0 1 Push-Pull						
			1 0 High impedance 1 1 Open drain						
XTAL2	14	20	Crystal pin 2: output of the inverting amplifier that forms the oscillator. Left open-circuit when an external oscillator clock is used.						
XTAL1	15	21	Crystal pin 1: input to the inverting amplifier that forms the oscillator, and input to the internal clock generator. Receives the external oscillator clock signal when an external oscillator is used.						
V _{SS}	16	22	Ground; circuit ground potential.						
V _{DD}	17	23	Power supply; power supply pin during normal operation and power reduction modes.						

 Table 1
 Pin description for QFP44/PLCC44, see Note 1.

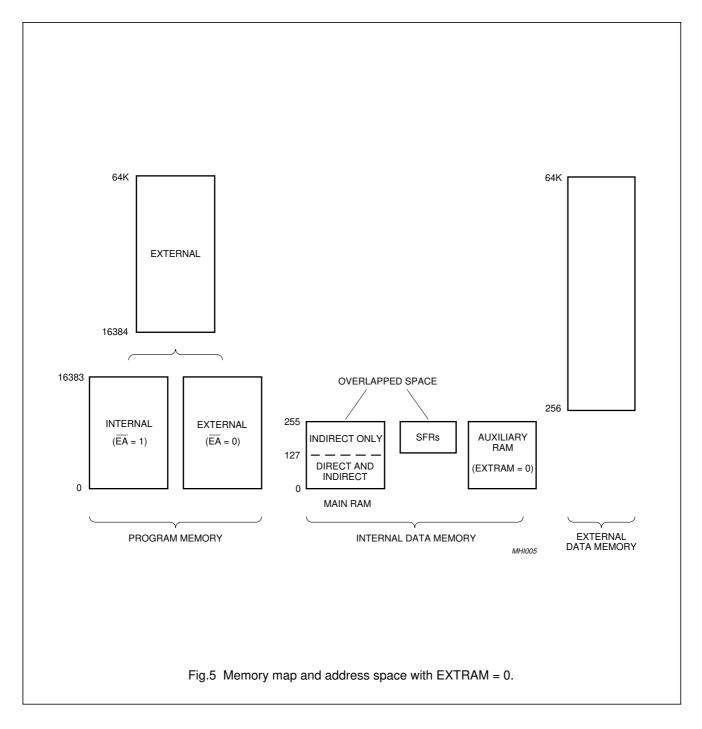
	QFP44 18 to 25	PLCC44	DESCRIPTION
	18 to 25		
	10 10 20	24 to 31	Port 2 (P2.0 to P2.7): 8-bit programmable I/O port lines; A08 to A15: High-order address byte for external memory.
			Alternate function: High-order address byte for external memory (A08-A15). Port 2 is also used to input the upper order address during EPROM programming and verification. A8 is on P2.0, A9 on P2.1, through A12 on P2.4.
			During reset, Port 2 will be asynchronously driven HIGH.
			Port 2 has four output modes selected on a per bit basis by writing to the P2M1 and P2M2 registers as follows:
			P2M1.x P2M2.x Mode Description
			0 0 Pseudo-bidirectional (standard c51 configuration default) 0 1 Push-Pull
			1 0 High impedance
			1 1 Open drain
PSEN	26	32	Program Store Enable output: read strobe to the external Program Memory via Ports 0 and 2. Is activated twice each machine cycle during fetches from external Program Memory. When executing out of external Program Memory two activations of PSEN are skipped during each access to external Data Memory. PSEN is not activated (remains HIGH) during no fetches from external Program Memory. PSEN can sink/source 8 LSTTL inputs. It can drive CMOS inputs without external pull-ups.
ALE/PROG :	27	33	Address Latch Enable output. Latches the low byte of the address during access of external memory in normal operation. It is activated every six oscillator periods except during an external Data Memory access. ALE can sink/source 8 LSTTL inputs. It can drive CMOS inputs without an external pull-up. To prohibit the toggling of ALE pin (RFI noise reduction) the bit A0 (SFR: AUXR.0) must be set by software; see Table 4. PROG : the programming pulse input; alternative function for the P87C591.
EA/V _{PP} :	29	35	External Access input. If, during reset, \overline{EA} is held at a TTL level HIGH the CPU executes out of the internal Program Memory. If, during reset, \overline{EA} is held at a TTL level LOW the CPU executes out of external Program Memory via Port 0 and Port 2. \overline{EA} is not allowed to float. \overline{EA} is latched during reset and don't care after reset. V _{PP} : the programming supply voltage; alternative function for the P87C591.
P0.0/AD0 to 5 P0.7/AD7	30 to 37	36 to 43	Port 0 : 8-bit open-drain bidirectional I/O port. During reset, Port 0 is HIGH-Impedance (Tri-State).
			AD7 to AD0 : Multiplexed Low-order address and Data bus for external memory. During these accesses internal pull-ups are activated. Port 0 can sink/source up to 8 LSTTL inputs.
AV _{ref+} :	38	44	Analog to Digital Conversion Reference Resistor: High-end.
AV _{SS} :	39	1	Analog ground.

P8xC591

SYMDOL	PIN		DESCRIPTION					
SYMBOL	QFP44	PLCC44	DESCRIPTION					
P1.0 to P1.4 P1.5 to P1.7	40 to 44 1 to 3	2 to 6 7 to 9	Port 1: 8-bit I/O port with a user configurable output type. The operation of Port 1 pins as inputs or outputs depends upon the port configuration selected Each port pin is configured independently.					
			Port 1 also provides various special functions as described below:					
P1.0	40	2	RXDC: CAN Receiver input line.					
P1.1	41	3	TXDC: CAN Transmit output line. During reset, Port P1.0 and P1.1 will be asynchronously driven resistive HIGH, P1.2 to P1.7 is High-Impedance (Tri-state).					
P1.2 to P1.4	42 to 44	4 to 6	CT0I/INT2 / CT1I/INT3 / CT2I/INT4: T2 Capture timer inputs or External Interrupt inputs.					
			ADC0 to ADC2: Alternate function: Input channels to ADC.					
P1.5 to P1.7	1 to 3	7 to 9	ADC3 to ADC5: Input channels to ADC:					
P1.5	1	7	CT3I/INT5: T2 Capture timer input or External Interrupt inputs.					
P1.6	2	8	SCL: Serial port clock line I ² C. Push-pull or pseudo bidrectional modes is not implemented at I ² C.					
P1.7	3	9	SDA: Serial data clock line I ² C.Push-pull or pseudo bidrectional modes is not implemented at I ² C.					
			Port 1 has four modes selected on a per bit basis by writing to the P1M1 and P1M2 registers as follows:					
			P1M1.x P1M2.x Mode Description					
			0 0 Pseudo-bidirectional (standard c51 configuration default 0 1 ⁽²⁾)					
			1 0 Push-Pull ⁽²⁾					
			1 1 High impedance Open drain					
			Port 1 is also used to input the lower order address byte during EPROM programming and verification. A0 is on P1.0, etc.					
PWM0	6	12	Pulse Width Modulation: Output 0.					
PWM1	28	34	Pulse Width Modulation: Output 1.					

Notes

1. To avoid "latch-up" effect as power-on, the voltage on any pin at any time must not be higher or lower than V_{DD} +0.5 V or V_{SS} –0.5 V.


2. Not implemented for P1.6 and P1.7.

P8xC591

7 MEMORY ORGANIZATION

The Central Processing Unit (CPU) manipulates operands in three memory spaces as follows (see Fig.5):

- 16 Kbytes internal resp. 64 Kbytes external Program Memory
- 512 bytes internal Data Memory Main-and Auxiliary RAM
- up to 64 Kbytes external Data Memory (with 256 bytes residing in the internal Auxiliary RAM).

P8xC591

7.1 Program Memory

The P8xC591 contains 16 Kbytes of on-chip Program Memory which can be extended to 64 Kbytes with external memories. When $\overline{\text{EA}}$ pin is held HIGH, the P8xC591 fetches instructions from internal ROM unless the address exceeds 3FFFh. Locations 4000h to FFFFh are fetched from external Program Memory. When the $\overline{\text{EA}}$ pin is held LOW, all instruction fetches are from external memory. The $\overline{\text{EA}}$ pin is latched during reset and is "don't care" after reset.

Both, for the ROM and EPROM version of the P8xC591, precautions are implemented to protect the device against illegal Program Memory code reading.

7.2 Addressing

The P8xC591 has five methods for addressing the Program and Data memory:

- Register
- Direct
- Register-Indirect
- Immediate
- Base-Register plus Index-Register-Indirect.

For more details about Addressing modes please refer to Section 22.1 "Addressing Modes".

7.3 Expanded Data RAM addressing

The P8xC591 has internal data memory that is mapped into four separate segments: the lower 128 bytes of RAM, upper 128 bytes of RAM, 128 bytes Special Function Register (SFR), and 256 bytes Auxiliary RAM (AUX-RAM) as shown in Figure 5.

The four segments are:

- 1. The Lower 128 bytes of RAM (addresses 00H to 7FH) are directly and indirectly addressable (see Fig.6).
- 2. The Upper 128 bytes of RAM (addresses 80H to FFH) are indirectly addressable.
- 3. The Special Function Registers, SFRs, (addresses 80H to FFH) are directly addressable only. All these SFRs are described in Table 4.
- 4. The 256-bytes AUX-RAM (00H FFH) are indirectly accessed by move external instruction, MOVX, and within the EXTRAM bit cleared, see Table 3.

The Lower 128 bytes can be accessed by either direct or indirect addressing. The Upper 128 bytes can be accessed by indirect addressing only. The Upper 128 bytes occupy the same address space as the SFR. That

means they have the same address, but are physically separate from SFR space.

When an instruction accesses an internal location above address 7FH, the CPU knows whether the access is to the upper 128 bytes of data RAM or to SFR space by the addressing mode used in the instruction. Instructions that use direct addressing access SFR space.

For example:

MOV 0A0H,#data

accesses the SFR at location 0A0H (which is P2). Instructions that use indirect addressing access the Upper 128 bytes of data RAM.

For example: MOV @ R0,#data

where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

The AUX-RAM can be accessed by indirect addressing, with EXTRAM bit cleared and MOVX instructions. This part of memory is physically located on-chip, logically occupies the first 256-bytes of external data memory.

With EXTRAM = 0, the AUX-RAM is indirectly addressed, using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. An access to AUX-RAM will not affect ports P0, P3.6 (WR#) and P3.7 (RD#). P2 SFR is output during external addressing. For example, with EXTRAM = 0,

MOV @ R0,#data

where R0 contains 0A0h, access the AUX-RAM at address 0A0H rather than external memory. An access to external data memory locations higher than FFH (i.e., 0100H to FFFFH) will be performed with the MOVX DPTR instructions in the same way as in the standard 80C51, so with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals. Refer to Table 4.

With EXTRAM = 1, MOVX @ Ri and MOVX @ DPTR will be similar to the standard 80C51. MOVX @ Ri will provide an 8-bit address multiplexed with data on Port 0 and any output port pins can be used to output higher order address bits. This is to provide the external paging capability. MOVX @ DPTR will generate a 16-bit address. Port 2 outputs the high-order eight address bits (the contents of DPH) while Port 0 multiplexes the low-order eight address bits (DPL) with data. MOVX @ Ri and MOVX @ DPTR will generate either read or write signals on P3.6 (#WR) and P3.7 (#RD).

The stack pointer (SP) may be located anywhere in the 256 bytes RAM (lower and upper RAM) internal data memory. The stack cannot be located in the AUX-RAM.

P8xC591

Table 2 AUX-RAM Page Register (address 8EH)						

7	6	5	4	3	2	1	0
-	-	-	-	-	LVADC	EXTRAM	AO

Table 3Description of AUX-RAM bits

BIT	SYMBOL		FUNCTION							
7 to 3	_	Reserved for	leserved for future use; see Note 1.							
2	LVADC	Enable A/D lo	nable A/D low voltage operation.							
		LVADC	LVADC Operating Mode							
		0	Turns off A/D charge pump.							
		1	Turns on A/D charge pump. Required for operation below 4 V.							
1	EXTRAM	Internal/Exter	Internal/External RAM (00H - FFH) access using MOVX @ RI / @ DPTR							
		EXTRAM	Operating Mode							
		0	Internal AUX-RAM (00H - FH) access using MOVX @ RI / @ DPTR.							
		1	External data memory access.							
0	AO	Disable/Enab	le ALE.							
		AO	Operating Mode							
		0	ALE is permitted at a constant rate of 1/6 the oscillator frequency.							
		1	ALE is active only during a MOVX or MOVC instruction.							

Notes

- 1. User software should not write '1's to reserved bits. These bits may be used in future 80C51 family products to invoke new features. In that case, the reset or inactive of the new bit will be 0, and its active value will be '1'. The value read from a reserved bit is indeterminate.
- 2. Reset value is 'xxxxx10B'.

P8xC591

7Fh	(MS	B)					(]	.SB)	127
		-,					(-	,	
	Ť							ŝ	5
2Fh	7F	7E	7D	7C	7B	7A	79	78	47
2Eh	77	76	75	74	73	72	71	70	46
2Dh 2Ch	6F 67	6E 66	6D 65	6C 64	6B 63	6A 62	69 61	68 60	45 44
2Bh	5F	5E	5D	5C	5B	5A	59	58	43
2Ah	57	56	55	54	53	52	51	50	42
29h	4F	4E	4D	4C	4B	4A	49	48	41
28h 27h	47 3F	46 3E	45 3D	44 3C	43 3B	42 3A	41 39	40 38	40 39
26h	37	36	35	34	33	32	31	30	38
25h	2F	2E	2D	2C	2B	2A	29	28	37
24h	27	26	25	24	23	22	21	20	36
23h 22h	1F 17	1E 16	1D 15	1C 14	1B 13	1A 12	19 11	18 10	35 34
21h	0F	0E	0D	0C	0B	0A	09	08	33
20h	07	06	05	04	03	02	01	00	32
1Fh			REG	ISTE	R BA	NK 3			31
18h									24
17h 10h			REG	ISTE	R BA	NK 2			23 16
0Fh	<u> </u>								15
08h			REG	ISTE	R BA	NK 1			8
07h			BEG	ISTE	R RA	NK 0			7
00h									0
							Λ	лніоо6	

Fig.6 Internal Main RAM bit addresses.

P8xC591

7.3.1 SPECIAL FUNCTION REGISTERS

Table 4	Special Function Register Bit Address, Symbol or Alternate Port Function
* = SFRs	are bit addressable; # = SFRs are modified from or added to the 80C51 SFRs.

NAME	DESCRIPTION	SFR ADDR	BIT FUNCTIONS AND ADDRESSES								RESET VALUE
		ADDR	MSB							LSB	VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
ADCH#	A/D converter high	C6H							•		xxxxxxxb
ADCON#	A/D control	C5H	ADC.1	ADC.0	-	ADCI	ADCS	AADR2	AADR1	AADR0	xx000000b
AUXR	Auxiliary	8EH	-	-	-	-	-	LVADC	EXTRAM	A0	xxxxx110B
AUXR1	Auxiliary	A2H	ADC8	AIDL	SRST	WDE	WUPD	0	-	DPS	000000x0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CTCON#	Capture control	EBH	CTN3	CTP3	CTN2	CTP2	CTN1	CTP1	CTN0	CTP0	00H
CTH3#	Capture high 3	CFH									xxxxxxxB
CTH2#	Capture high 2	CEH									xxxxxxxB
CTH1#	Capture high 1	CDH									xxxxxxxB
CTH0#	Capture high 0	ССН									xxxxxxxB
CMH2#	Compare high 2	СВН									00H
CMH1#	Compare high 1	CAH									00H
CMH0#	Compare high 0	С9Н									00H
CTL3#	Capture low 3	AFH									xxxxxxxB
CTL2#	Capture low 2	AEH									xxxxxxxB
CTL1#	Capture low 1	ADh									xxxxxxxB
CTL0#	Capture low 0	ACH									xxxxxxxB
CML2#	Compare low 2	ABH									00H
CML1#	Compare low 1	ААН									00H
CML0#	Compare low 0	A9H									00H
DPTR:	Data Pointer (2 bytes):										
DPH	Data Pointer High	83h									00H
DPL	Data Pointer Low	82h									00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IENO*#	Interrupt Enable 0	A8H	EA	EAD	ES1	ES0	ET1	EX1	ET0	EX0	оон
			EF	EE	ED	EC	EB	EA	E9	E8	
IEN1*#	Interrupt Enable 1	E8H	ET2	ECAN	ECM1	ECM0	ECT3	ECT2	ECT1	ECT0	оон
			BF	BE	BD	BC	BB	BA	B9	B8	
IP0*#	Interrupt Priority 0	B8H	-	PAD	PS1	PS0	PT1	PX1	PT0	PX0	x0000000B
		-	FF	FE	FD	FC	FB	FA	F9	F8	
IP0H	Interrupt Priority 0 high	B7H	-	PADH	PS1H	PS0H	PT1H	PX1H	PT0H	PX0H	x0000000B
IP1*#	Interrupt Priority 1	F8h	PT2	PCAN	PCM1	PCM0	РСТ3	PCT2	PCT1	PCT0	00H
IP1H	Interrupt Priority 1 high	F7H	PT2H	PCANH	PCM1H	PCM0H	РСТЗН	PCT2H	PCT1H	РСТОН	00H
CANMOD	CAN Mode Register	C4H									00H
CANCON	CAN Command (w) and Interrupt (r)	СЗН									00H
CANDAT	CAN Data	C2H									00H
CANADR	CAN Address	C1H									00H
			C7	C6	C5	C4	C3	C2	C1	C0	
CANSTA*	CAN Status (r)	СОН	BS	ES	TS	RS	TCS	TBS	DOS	RBS	00Н
	CAN Status (I) CAN Interrupt Enable (w)		BEIE	ALIE	EPIE	WUIE	DOIE	EIE	TIE	RIE	
			DEIE	ALIE	EFIE	WUIE		EIE			

NAME	DESCRIPTION	SFR ADDR	MSB		BIT FUN	CTIONS	AND ADE	RESSES		LSB	RESET VALUE
P1M1	Port 1 output mode 1	92H									FCH
P1M2	Port 1 output mode 2	93H									00H
P2M1	Port 2 output mode 1	94H									00H
P2M2	Port 2 output mode 2	95H									00H
P3M1	Port 3 output mode 1	9AH									00H
P3M2	Port 3 output mode 2	9BH									00H
1 OWL		5511	B7	B6	B5	B4	B3	B2	B1	B0	
			-		CSMR3	CSMR2	CSMR1	CSMR0	RT2	T2	1
P3*	Port 3	B0H	RD	WR	T1	ТО	INT1	INTO	TXD	RXD	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	1
P2*	Port 2	A0H	A15	A14	A13	A12	A11	A10	A9	A8	FFH
			97	96	95	94	93	92	91	90	1
			ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	-	_	1
P1*	Port 1	90H	SDA	SCL	CT3I	CT2I	CT1I	CTOI	TXDC	RXDC	- FFH
		0011	87	86	85	84	83	82	81	80	1
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
PCON	Power Control	87H	SMOD1	SMOD0	POF	WLE	GF1	GF0	PD	IDL	00x00000B
PSW	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	P	00H
PWMP#	PWM Prescaler	FEH		////	10	1101	1100	0.		•	оон
PWMP1#	PWM Register 1	FDH									00H
PWMP0#	PWM Register 0	FCH									00H
RTE#	Reset Enable	EFH					RP35	RP34	RP33	RP32	xxxx0000B
SOADDR	Serial 0 Slave Address	F9H					1			111 02	00H
SOADEN	Slave Address Mask	B9H									00H
SP	Stack Pointer	81H									07H
S0BUF	Serial 0 Data Buffer	99H									xxxxxxxB
SOPSL	Prescaler Value UART	FAH									00H
SOPSH	Prescaler/Value UART	FBH	SPS					Prescaler h	nigher nibble	9	0xxx0000B
			9F	9E	9D	9C	9B	9A	99	98	1
S0CON*	Serial 0 Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	оон
S1CON#*	Serial 1Control	D8H	CR2	ENS1	STA	ST0	SI	AA	CR1	CR0	00H
S1ADR#	Serial 1 Address	DBH					ESS			GC	00H
S1DAT#	Serial 1 Data	DAH									00Н
S1STA#	Serial 1 Status	D9H	SC4	SC3	SC2	SC1	SC0	0	0	0	F8H
			DF	DE	DD	DC	DB	DA	D9	D8	-
STE#	Set Enable	EEH					SP35	SP34	SP33	SP32	xxxx0000B
TH1	Timer High 1	8DH		1	L	1	1	1	1	1	00Н
TH0	Timer High 0	8CH									00H
TL1	Timer Low 1	8BH									00H
TL0	Timer Low 0	8AH									00H
TMH2#	Timer High 2	EDH									00H
TML2#	Timer Low 2	ECH									00H

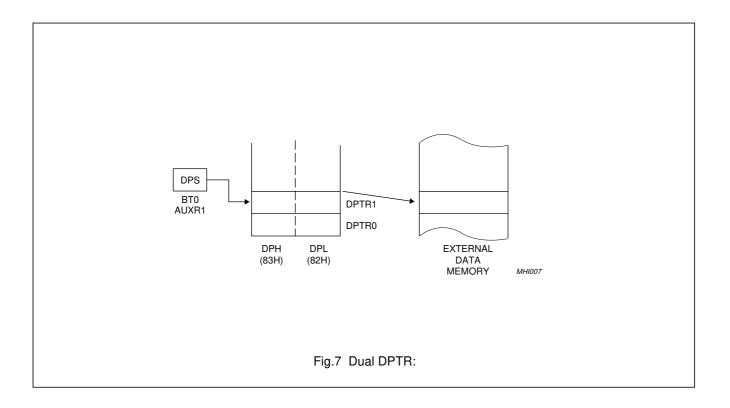
NAME	DESCRIPTION	SFR ADDR	MOD	BIT FUNCTIONS AND ADDRESSES						1.00	RESET VALUE
			MSB			-				LSB	
TMOD	Timer Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
TM2CON#	Timer 2 Control	EAH	T2IS1	T2IS0	T2ER	T2B0	T2P1	T2P0	T2MS1	T2MS0	00H
			CF	CE	CD	CC	СВ	CA	C9	C8	
TM2IR#*	Timer 2/CAN Int Flag Reg	C8H	T2OV	CMI2/ CAN	CMI1	CMI0	СТІЗ	CTI2	CTI1	CTI0	00H
T3#	Timer 3	FFH									00H

P8xC591

7.4 Dual DPTR

The dual DPTR structure (see Figure 7) is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.


Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the other bits.

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTRIncrements the	e data pointer by 1
MCV DPTR, #data 16 constant	Loads the DPTR with a 16-bit
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR, A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the low or high byte in an instruction which accesses the SFRs. See application note AN458 for more details.

P8xC591

7.4.1 AUXR1 PAGE REGISTER

Table 5 AUXR1 Page Register (address A2H)

7	6	5	4	3	2	1	0
ADC8	AIDL	SRST	WDE	WUPD	0	—	DSP

Table 6 Description of AUXR1 of bits

User software should not write 1s to reserved bits. Theses bits may be used in future 8051 family products to invoke new features. In that case, the reset or inactive value of the new bit will be logic 0, and its active value will be logic 1. The value read from a reserved bit is indeterminate. The reset value of AUXR1 is (00000xB).

BIT	SYMBOL	DESCRIPTION					
7	ADC8	ADC Mode Switch. Switches between 10-bit conversion and 8-bit conversion					
		ADC8 Operating Mode					
		0 10-bit conversion (50 machine cycles)					
		1 8-bit conversion (24 machine cycles)					
6	AIDL	Enables the ADC during Idle mode.					
5	SRST	Software Reset.					
4	WDE	Watchdog Timer Enable Flag.					
3	WUPD	Enable Wake-up from Power-down.					
2	0	Reserved.					
1	_	Reserved.					
0	DSP	Data Pointer Switch. Switches between DPRT0 and DPTR1.					
		ADC8 Operating Mode					
		0 DPTR0					
		1 DPTR1					

P8xC591

8 I/O FACILITIES

The P8xC591 consists of 32 I/O Port lines with partly multiple functions. The I/O's are held HIGH during reset (asynchronous, before oscillator is running).

Ports 0, 1, 2 and 3 perform the following alternative functions:

- Port 0 is the same as in the 80C51. After reset the Port Special Function Register is set to 'FFh' as known from other 80C51 derivatives. Port 0 also provides the multiplexed low-order address and data bus used for expanding the P8xC591 with standard memories and peripherals.
- Port 1 supports several alternative functionalities. For this reason it has different I/O stages. Note, port P1.0 and P1.1 are Driven-High and P1.2 to P1.7 are High-Impedance (Tri-state) after reset.
- Port 2 is the same as in the 80C51. After reset the Port Special Function Register is set to 'FFh' as known from other 80C51 derivatives. Port 2 also provides the high-order address bus when the P8xC591 is expanded with external Program Memory and/or external Data Memory.
- Port 3 is the same as in the 80C51. During reset the Port 3 Special Function Register is set to 'FFh' as known from other 80C51 derivatives.

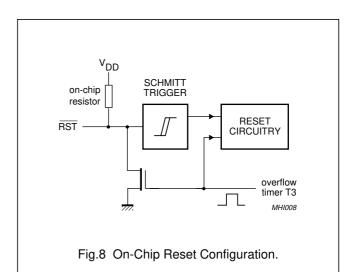
9 OSCILLATOR CHARACTERISTICS

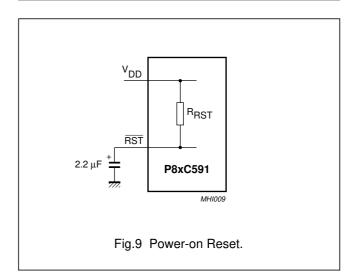
XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the logic symbol.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal. However, minimum and maximum high and low times specified in the data sheet must be observed.

10 RESET

A reset is accomplished by holding the $\overrightarrow{\text{RST}}$ pin LOW for at least two machine cycles (12 oscillator periods), while the oscillator is running. To insure a good power-on reset, the $\overrightarrow{\text{RST}}$ pin must be low long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles.


The RST line can also be pulled LOW internally by a pull-down transistor activated by the watchdog timer T3. The length of the output pulse from T3 is 3 machine cycles.


A pulse of such short duration is necessary in order to recover from a processor or system fault as fast as possible.

Note that the short reset pulse from Timer T3 cannot discharge the power-on reset capacitor (see Figure 8). Consequently, when the watchdog timer is also used to set external devices, this capacitor arrangement should not be connected to the $\overline{\text{RST}}$ pin, and a different circuit should be used to perform the power-on reset operation. A timer T3 overflow, if enabled, will force a reset condition to the P8xC591 by an internal connection, whether the output $\overline{\text{RST}}$ is pulled-up HIGH or not.

A reset may be performed in software by setting the software reset bit, SRST (AUXR1.5).

This device also has a Power-on Detect Reset circuit as V_{CC} transitions from V_{CC} past $V_{\overline{RST}}.$

P8xC591

11 LOW POWER MODES

11.1 Stop Clock Mode

The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power-down mode is suggested.

11.2 Idle Mode

In the Idle mode (see Table 7), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the Idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The Idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a Power-on reset.

11.3 Power-down Mode

To save even more power, a Power-down mode (see Table 7) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2.0 V and care must be taken to return V_{CC} to the minimum specified operating voltages before the Power-down Mode is terminated.

A hardware reset or external interrupt can be used to exit from Power-down. The Wake-up from Power-down bit, WUPD (AUXR1.3) must be set in order for an interrupt to cause a Wake-up from Power-down. Reset redefines all the SFRs but does not change the on-chip RAM. A Wake-up allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power-down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

MODE	MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3	PWM0/ PWM1
Idle	internal	1	1	port data	port data	port data	port data	high
	external	1	1	float	port data	address	port data	high
Power-down	internal	0	0	port data	port data	port data	port data	high
	external	0	0	float	port data	port data	port data	high

Table 7 Status of external pins during Idle and Power-down modes

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power-down.

P8xC591

11.3.1 POWER OFF FLAG

The Power Off Flag (POF) is set by on-chip circuitry when the V_{CC} level on the P8xC591 rises from 0 to 5 V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or warm after Power-down. The V_{CC} level must remain above 3 V for the POF to remain unaffected by the V_{CC} level.

11.3.2 DESIGN CONSIDERATION

• When the Idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

11.3.3 ONCETM MODE

The $ONCE^{TM}$ ("On-Circuit Emulation") Mode facilities testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:

- 1. Pull ALE low while the device is in reset an PSEN is high,
- 2. Hold ALE low as \overline{RST} is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and $\overrightarrow{\text{PSEN}}$ are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

11.3.4 REDUCED EMI MODE

The ALE-Off bit, AO (AUXR.0) can be set to 0 disable the ALE output. It will automatically become active when required for external memory accesses and resume to the OFF state after completing the external memory access.

11.3.5 POWER CONTROL REGISTER (PCON)

 Table 8
 Power Control Register (address 87H)

7	6	5	4	3	2	1	0
SMOD1	SMOD0	POF	WLE	GF1	GF0	PD	IDL

Table 9 Description of PCON bits

If logic 1s are written to PD and IDL at the same time, PD takes precedence. The reset value of PCON is (0XX00000).

BIT	SYMBOL	DESCRIPTION
7	SMOD1	Double Baud rate . When set to logic 1 the baud rate is doubled when the serial port SIO0 is being used in Modes 1, 2 and 3.
6	SMOD0	Double Baud rate. Selects SM0/FE for SCON.7 bit.
5	POF	Power Off flag.
4	WLE	Watchdog Load Enable. This flag must be set by software prior to loading T3 (Watchdog Timer). It is cleared when T3 is loaded.
3	GF1	General purpose flag bits.
2	GF0	
1	PD	Power-down mode select . Setting this bit activates Power-down mode. It can only be set if the Watchdog timer enable bit 'WDE' is set to logic 0.
0	IDL	Idle mode select. Setting this bit activates the Idle mode.

P8xC591

12 CAN, CONTROLLER AREA NETWORK

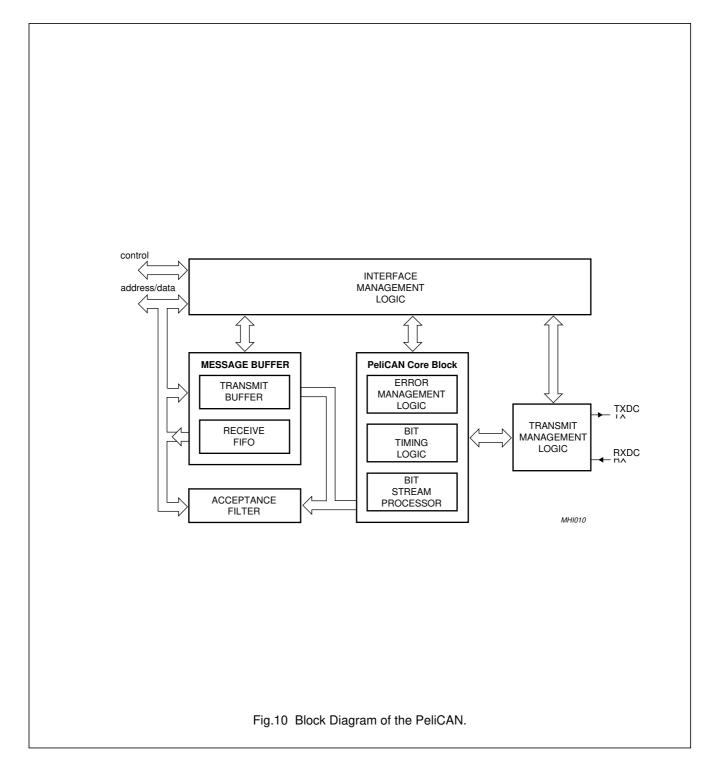
Controller Area Network is the definition of a high performance communication protocol for serial data communication. The CAN controller circuitry is designed to provide a full implementation of the CAN-Protocol according to the CAN Specification Version 2.0 B. Microcontroller including this on-chip CAN controller are used to build powerful local networks, both for general industrial and automotive environments. The result is a strongly reduced wiring harness and enhanced diagnostic and supervisory capabilities.

The P8xC591 includes the same functions known from the SJA1000 stand-alone CAN controller from Philips Semiconductors with the following improvements:

- Enhanced receive interrupt
- Enhanced acceptance filter
 - 8 filter for standard frame formats
 - 4 filter for extended formats
 - "change on the fly" feature.

12.1 Features of the PeliCAN controller

12.1.1 GENERAL CAN FEATURES


- CAN 2.0B protocol compatibility
- Multi-master architecture
- Bus access priority determined by the message identifier (11 bit or 29 bit)
- Non destructive bit-wise arbitration
- Guaranteed latency time for high priority messages
- Programmable transfer rate (up to 1Mbit/s)
- Multicast and broadcast message facility
- Data length from 0 up to 8 bytes
- Powerful error handling capability
- Non-return-to-zero (NRZ) coding/decoding with bit-stuffing
- Suitable for use in a wide range of networks including SAE's network classes A, B, C.

- 12.1.2 P8xC591 PELICAN FEATURES (ADDITIONAL TO CAN 2.0B)
- Supports 11-bit identifier as well as 29-bit identifier
- Bit rates up to 1 Mbit/s
- · Error Counters with read / write access
- Programmable Error Warning Limit
- Error Code Capture with detailed bit position
- Arbitration Lost Interrupt with detailed bit position
- Single Shot Transmission (no re-transmission)
- Listen Only Mode (no acknowledge, no active error flags)
- Hot Plugging support (software driven bit rate detection)
- Extended receive buffer (FIFO, 64 byte)
- Receive Buffer level sensitive Receive Interrupt
- High Priority Acceptance Filters for Receive Interrupt
- Acceptance Filters with "change on the fly" feature
- Reception of "own" messages (Self Reception Request)
- Programmable CAN output driver configuration.

P8xC591

12.2 PeliCAN structure

A 80C51 CPU Interface connects the PeliCAN to the internal bus of the P8xC591 microcontroller. Via five Special Function Registers CANADR, CANDAT, CANMOD, CANSTA and CANCON the CPU has access to the PeliCAN. The SFR will described later on.

