imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Preliminary data Supersedes data of 2001 Apr 04 IC28 Data Handbook

2001 Oct 26

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

	1
FEATURES	1
	1
PIN CONFIGURATION, 20-PIN DIP, SO, AND TSSOP PACKAGES	2
	2
	3
	5
	6
	9
Enhanced CPU	9
Analog Functions	9
Analog Comparators	9
Comparator Configuration	9
Internal Reference Voltage	11
Comparator Interrupt	11
Comparators and Power Reduction Modes	11
Comparator Configuration Example	11
I ² C Serial Interface	12
I ² C Interrupts	12
Reading I2CON	12
Checking ATN and DRDY	13
Writing I2CON	14
Regarding Transmit Active	14
Regarding Software Response Time	15
Interrupts	16
External Interrupt Inputs	17
I/O Ports	18
Quasi-Bidirectional Output Configuration	18
Open Drain Output Configuration	19
Push-Pull Output Configuration	19
Keyboard Interrupt (KBI)	20
	22
Low Frequency Oscillator Option	22
Medium Frequency Oscillator Option	22
High Frequency Oscillator Option	22
On-Chip BC Oscillator Option	22
External Clock Input Option	22

22

24 24

24

25

25 25

25

27 27

28 29

30

30

30

31

87LPC762

Clock Output CPU Clock Modification: CLKR and DIVM

Power On Detection

Idle Mode

Power Down Mode Low Voltage EPROM Operation

Mode 0

Mode 1 Mode 2

Mode 3

Timer Overflow Toggle Output

Power Monitoring Functions Brownout Detection

Power Reduction Modes

Reset Timer/Counters

87LPC762

UART	31
Mode 0	31
Mode 1	31
Mode 2	31
Mode 3	31
Serial Port Control Register (SCON)	32
Baud Rates	33
Using Timer 1 to Generate Baud Rates	33
More About UART Mode 0	35
More About UART Mode 1	35
More About UART Modes 2 and 3	38
Multiprocessor Communications	38
Automatic Address Recognition	41
Watchdog Timer	41
Watchdog Feed Sequence	41
Watchdog Reset	41
Additional Features	43
Software Reset	43
Dual Data Pointers	43
EPROM Characteristics	44
32-Byte Customer Code Space	44
System Configuration Bytes	44
Security Bits	45
ABSOLUTE MAXIMUM RATINGS	45
DC ELECTRICAL CHARACTERISTICS	46
COMPARATOR ELECTRICAL CHARACTERISTICS	47
AC ELECTRICAL CHARACTERISTICS	47
REVISION HISTORY	53

87LPC762

GENERAL DESCRIPTION

The 87LPC762 is a 20-pin single-chip microcontroller designed for low pin count applications demanding high-integration, low cost solutions over a wide range of performance requirements. A member of the Philips low pin count family, the 87LPC762 offers programmable oscillator configurations for high and low speed crystals or RC operation, wide operating voltage range, programmable port output configurations, selectable Schmitt trigger inputs, LED drive outputs, and a built-in watchdog timer. The 87LPC762 is based on an accelerated 80C51 processor architecture that executes instructions at twice the rate of standard 80C51 devices.

FEATURES

- An accelerated 80C51 CPU provides instruction cycle times of 300–600ns for all instructions except multiply and divide when executing at 20 MHz. Execution at up to 20 MHz when V_{DD} = 4.5 V to 6.0 V, 10 MHz when V_{DD} = 2.7 V to 6.0 V.
- 2.7 V to 6.0 V operating range for digital functions.
- 2 kbytes EPROM code memory.
- 128 byte RAM data memory.
- 32-byte customer code EPROM allows serialization of devices, storage of setup parameters, etc.
- Two 16-bit counter/timers. Each timer may be configured to toggle a port output upon timer overflow.
- Two analog comparators.
- Full duplex UART.
- I²C communication port.

- Eight keypad interrupt inputs, plus two additional external interrupt inputs.
- Four interrupt priority levels.
- Watchdog timer with separate on-chip oscillator, requiring no external components. The watchdog timeout time is selectable from 8 values.
- Active low reset. On-chip power-on reset allows operation with no external reset components.
- Low voltage reset. One of two preset low voltage levels may be selected to allow a graceful system shutdown when power fails. May optionally be configured as an interrupt.
- Oscillator Fail Detect. The watchdog timer has a separate fully on-chip oscillator, allowing it to perform an oscillator fail detect function.
- Configurable on-chip oscillator with frequency range and RC oscillator options (selected by user programmed EPROM bits). The RC oscillator option allows operation with no external oscillator components.
- Programmable port output configuration options: quasi-bidirectional, open drain, push-pull, input-only.
- Selectable Schmitt trigger port inputs.
- LED drive capability (20 mA) on all port pins.
- Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns minimum ramp times.
- 15 I/O pins minimum. Up to 18 I/O pins using on-chip oscillator and reset options.
- Only power and ground connections are required to operate the 87LPC762 when fully on-chip oscillator and reset options are selected.
- Serial EPROM programming allows simple in-circuit production coding. Two EPROM security bits prevent reading of sensitive application programs.
- Idle and Power Down reduced power modes. Improved wakeup from Power Down mode (a low interrupt input starts execution). Typical Power Down current is 1 μA.
- 20-pin DIP, SO, and TSSOP packages.

Part Number	Temperature Range °C and Package	Frequency	Drawing Number
P87LPC762BN	0 to +70, Plastic Dual In-Line Package	20 MHz (5 V), 10 MHz (3 V)	SOT146-1
P87LPC762BD	0 to +70, Plastic Small Outline Package	20 MHz (5 V), 10 MHz (3 V)	SOT163-1
P87LPC762FN	-45 to +85, Plastic Dual In-Line Package	20 MHz (5 V), 10 MHz (3 V)	SOT146-1
P87LPC762FD	-45 to +85, Plastic Small Outline Package	20 MHz (5 V), 10 MHz (3 V)	SOT163-1
P87LPC762BDH	0 to +70, Plastic Thin Small Outline Package	20 MHz (5 V), 10 MHz (3 V)	SOT360-1

ORDERING INFORMATION

87LPC762

PIN CONFIGURATION, 20-PIN DIP, SO, AND TSSOP PACKAGES

LOGIC SYMBOL

BLOCK DIAGRAM

87LPC762

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

Figure 1. 87LPC762 Program and Data Memory Map

87LPC762

PIN DESCRIPTIONS

MNEMONIC	PIN NO.	TYPE			NAME AND FUNCTION						
P0.0–P0.7	1, 13, 14, 16–20	I/O	Port 0: Port 0 the quasi-bid by the PRHI depends upo section on I/C The Keyboar) is an 8-bit l irectional mo bit in the UCI n the port co D port configu d Interrupt fe	O port with a user-configurable output type. Port 0 latches are configured in de and have either ones or zeros written to them during reset, as determined FG1 configuration byte. The operation of port 0 pins as inputs and outputs nfiguration selected. Each port pin is configured independently. Refer to the uration and the DC Electrical Characteristics for details.						
				ort o also provides various special functions as described below.							
	1	0	P0.0		Comparator 2 output.						
	20		P0.1	Comparator 2 positive input 8. Comparator 2 positive input 4							
	19		P0.2		Comparator 2 positive input A.						
	18		P0.3		Comparator I positive input B.						
	10		P0.4		Comparator i positive input A.						
	10		P0.5	CMPREF Comparator reference (negative) input.							
	14	0	P0.6	T1 Timer/counter 1 external count input or overflow output							
	13	1/0	P0.7								
Ρ1.0-Ρ1.7	2–4, 8–12	1/0	Port 1: Port below. Port 1 written to the operation of t selected. Eac port configura	low. Port 1 latches are configured in the quasi-bidirectional mode and have either ones or ze litten to them during reset, as determined by the PRHI bit in the UCFG1 configuration byte. Tl eration of the configurable port 1 pins as inputs and outputs depends upon the port configura lected. Each of the configurable port pins are programmed independently. Refer to the section rt configuration and the DC Electrical Characteristics for details.							
			Port 1 also p	Port 1 also provides various special functions as described below.							
	12	0	P1.0 TxD Transmitter output for the serial port.								
	11	I	P1.1	RxD	Receiver input for the serial port.						
	10	I/O	P1.2	Т0	Timer/counter 0 external count input or overflow output.						
		I/O		SCL	I ² C serial clock input/output. When configured as an output, P1.2 is open drain, in order to conform to I ² C specifications.						
	9	I	P1.3	INT0	External interrupt 0 input.						
		I/O		SDA	$\rm I^2C$ serial data input/output. When configured as an output, P1.3 is open drain, in order to conform to $\rm I^2C$ specifications.						
	8	I	P1.4	INT1	External interrupt 1 input.						
	4	Ι	P1.5	RST	External Reset input (if selected via EPROM configuration). A low on this pin resets the microcontroller, causing I/O ports and peripherals to take on their default states, and the processor begins execution at address 0. When used as a port pin, P1.5 is a Schmitt trigger input only.						
P2.0-P2.1	6, 7	I/O	Port 2: Port 2 quasi-bidirec the PRHI bit depends upo section on I/C	Port 2 : Port 2 is a 2-bit I/O port with a user-configurable output type. Port 2 latches are configured in uasi-bidirectional mode and have either ones or zeros written to them during reset, as determined to be PRHI bit in the UCFG1 configuration byte. The operation of port 2 pins as inputs and outputs lepends upon the port configuration selected. Each port pin is configured independently. Refer to th ection on I/O port configuration and the DC Electrical Characteristics for details.							
			Port 2 also pi	rovides vario	us special functions as described below.						
	7	0	P2.0	X2	Output from the oscillator amplifier (when a crystal oscillator option is selected via the EPROM configuration).						
				CLKOUT	CPU clock divided by 6 clock output when enabled via SFR bit and in conjunction with internal RC oscillator or external clock input.						
	6	Ι	P2.1	X1	Input to the oscillator circuit and internal clock generator circuits (when selected via the EPROM configuration).						
V _{SS}	5	I	Ground: 0V	reference.							
V _{DD}	15	I	Power Supp Power Down	ly: This is the modes.	e power supply voltage for normal operation as well as Idle and						

SPECIAL FUNCTION REGISTERS

Name	Description	SFR Address	м	Bit Functions and Addresses MSB LSB								
			E7	E6	E5	E4	E3	E2	E1	E0		
ACC*	Accumulator	E0h									00h	
AUXR1#	Auxiliary Function Register	A2h	KBF	BOD	BOI	LPEP	SRST	0	-	DPS	02h ¹	
			F7	F6	F5	F4	F3	F2	F1	F0	1	
B*	B register	F0h									00h	
CMP1#	Comparator 1 control register	ACh	-	-	CE1	CP1	CN1	OE1	CO1	CMF1	00h ¹	
CMP2#	Comparator 2 control register	ADh	_	_	CE2	CP2	CN2	OE2	CO2	CMF2	00h ¹	
DIVM#	CPU clock divide-by-M control	95h									00h	
DPTR:	Data pointer (2 bytes)											
DPH	Data pointer high byte	83h									00h	
DPL	Data pointer low byte	82h									00h	
			CF	CE	CD	CC	СВ	CA	C9	C8		
I2CFG#*	I ² C configuration register	C8h/RD	SLAVEN	MASTRQ	0	TIRUN	-	-	CT1	CT0	00h ¹	
		C8h/WR	SLAVEN	MASTRQ	CLRTI	TIRUN	-	-	CT1	CT0	1	
			DF	DE	DD	DC	DB	DA	D9	D8]	
I2CON#*	I ² C control register	D8h/RD	RDAT	ATN	DRDY	ARL	STR	STP	MASTER	-	80h ¹	
		D8h/WR	CXA	IDLE	CDR	CARL	CSTR	CSTP	XSTR	XSTP]	
I2DAT#	I ² C data register	D9h/RD	RDAT	0	0	0	0	0	0	0	80h	
		D9h/WR	XDAT	x	х	x	x	х	x	х]	
			AF	AE	AD	AC	AB	AA	A9	A8]	
IEN0*	Interrupt enable 0	A8h	EA	EWD	EBO	ES	ET1	EX1	ET0	EX0	00h	
			EF	EE	ED	EC	EB	EA	E9	E8]	
IEN1#*	Interrupt enable 1	E8h	ETI	-	EC1	-	-	EC2	EKB	El2	00h ¹	
			BF	BE	BD	BC	BB	BA	B9	B8]	
IP0*	Interrupt priority 0	B8h	-	PWD	PBO	PS	PT1	PX1	PT0	PX0	00h ¹	
IP0H#	Interrupt priority 0 high byte	B7h	_	PWDH	РВОН	PSH	PT1H	PX1H	PT0H	PX0H	00h ¹	
			FF	FE	FD	FC	FB	FA	F9	F8		
IP1*	Interrupt priority 1	F8h	PTI	-	PC1	_	_	PC2	РКВ	PI2	00h ¹	

87LPC762

Name	Description	SFR Address	M	SB	Bit Fu	nctions a	nd Addre	SSES	LS	B	Reset Value
IP1H#	Interrupt priority 1 high byte	F7h	PTIH	-	PC1H	-	-	PC2H	РКВН	PI2H	00h ¹
KBI#	Keyboard Interrupt	86h									00h
			87	86	85	84	83	82	81	80	
P0*	Port 0	80h	T1	CMP1	CMPREF	CIN1A	CIN1B	CIN2A	CIN2B	CMP2	Note 2
			97	96	95	94	93	92	91	90	
P1*	Port 1	90h	(P1.7)	(P1.6)	RST	INT1	INT0	Т0	RxD	TxD	Note 2
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0h	-	-	-	-	-	-	X1	X2	Note 2
P0M1#	Port 0 output mode 1	84h	(P0M1.7)	(P0M1.6)	(P0M1.5)	(P0M1.4)	(P0M1.3)	(P0M1.2)	(P0M1.1)	(P0M1.0)	00h
P0M2#	Port 0 output mode 2	85h	(P0M2.7)	(P0M2.6)	(P0M2.5)	(P0M2.4)	(P0M2.3)	(P0M2.2)	(P0M2.1)	(P0M2.0)	00H
P1M1#	Port 1 output mode 1	91h	(P1M1.7)	(P1M1.6)	-	(P1M1.4)	-	-	(P1M1.1)	(P1M1.0)	00h ¹
P1M2#	Port 1 output mode 2	92h	(P1M2.7)	(P1M2.6)	-	(P1M2.4)	-	-	(P1M2.1)	(P1M2.0)	00h ¹
P2M1#	Port 2 output mode 1	A4h	P2S	P1S	P0S	ENCLK	T1OE	T0OE	(P2M1.1)	(P2M1.0)	00h
P2M2#	Port 2 output mode 2	A5h	-	_	_	-	-	-	(P2M2.1)	(P2M2.0)	00h ¹
PCON	Power control register	87h	SMOD1	SMOD0	BOF	POF	GF1	GF0	PD	IDL	Note 3
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program status word	D0h	CY	AC	F0	RS1	RS0	OV	F1	Р	00h
PT0AD#	Port 0 digital input disable	F6h									00h
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial port control	98h	SM0	SM1	SM2	REN	TB8	RB8	ΤI	RI	00h
SBUF	Serial port data buffer register	99h									xxh
SADDR#	Serial port address register	A9h									00h
SADEN#	Serial port address enable	B9h									00h
SP	Stack pointer	81h									07h
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer 0 and 1 control	88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00h
TH0	Timer 0 high byte	8Ch									00h
TH1	Timer 1 high byte	8Dh									00h
TL0	Timer 0 low byte	8Ah									00h

87LPC762

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

Name	Description	SFR Address	M	Bit Functions and Addresses MSB LSB							Reset Value
TL1	Timer 1 low byte	8Bh									00h
тмор	Timer 0 and 1 mode	89h	GATE	C/T	M1	M0	GATE	C/T	M1	M0	00h
]
WDCON#	Watchdog control register	A7h	-	-	WDOVF	WDRUN	WDCLK	WDS2	WDS1	WDS0	Note 4
WDRST#	Watchdog reset register	A6h									xxh

NOTES:

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

1. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other

 I/O port values at reset are determined by the PRHI bit in the UCFG1 configuration byte.
 I/O port values at reset are determined by the PRHI bit in the UCFG1 configuration byte.
 The PCON reset value is x x BOF POF-0 0 0 0b. The BOF and POF flags are not affected by reset. The POF flag is set by hardware upon power up. The BOF flag is set by the occurrence of a brownout reset/interrupt and upon power up.

4. The WDCON reset value is xx11 0000b for a Watchdog reset, xx01 0000b for all other reset causes if the watchdog is enabled, and xx00 0000b for all other reset causes if the watchdog is disabled.

FUNCTIONAL DESCRIPTION

Details of 87LPC762 functions will be described in the following sections.

Enhanced CPU

The 87LPC762 uses an enhanced 80C51 CPU which runs at twice the speed of standard 80C51 devices. This means that the performance of the 87LPC762 running at 5 MHz is exactly the same as that of a standard 80C51 running at 10 MHz. A machine cycle consists of 6 oscillator cycles, and most instructions execute in 6 or 12 clocks. A user configurable option allows restoring standard 80C51 execution timing. In that case, a machine cycle becomes 12 oscillator cycles.

In the following sections, the term "CPU clock" is used to refer to the clock that controls internal instruction execution. This may sometimes be different from the externally applied clock, as in the case where the part is configured for standard 80C51 timing by means of the CLKR configuration bit or in the case where the clock is divided down via the setting of the DIVM register. These features are described in the Oscillator section.

Analog Functions

The 87LPC762 incorporates two Analog Comparators. In order to give the best analog function performance and to minimize power consumption, pins that are actually being used for analog functions must have the digital outputs and the digital inputs disabled.

Digital outputs are disabled by putting the port output into the Input Only (high impedance) mode as described in the I/O Ports section.

Digital inputs on port 0 may be disabled through the use of the PT0AD register. Each bit in this register corresponds to one pin of

Port 0. Setting the corresponding bit in PT0AD disables that pin's digital input. Port bits that have their digital inputs disabled will be read as 0 by any instruction that accesses the port.

Analog Comparators

Two analog comparators are provided on the 87LPC762. Input and output options allow use of the comparators in a number of different configurations. Comparator operation is such that the output is a logical one (which may be read in a register and/or routed to a pin) when the positive input (one of two selectable pins) is greater than the negative input (selectable from a pin or an internal reference voltage). Otherwise the output is a zero. Each comparator may be configured to cause an interrupt when the output value changes.

Comparator Configuration

Each comparator has a control register, CMP1 for comparator 1 and CMP2 for comparator 2. The control registers are identical and are shown in Figure 2.

The overall connections to both comparators are shown in Figure 3. There are eight possible configurations for each comparator, as determined by the control bits in the corresponding CMPn register: CPn, CNn, and OEn. These configurations are shown in Figure 4. The comparators function down to a V_{DD} of 3.0V.

When each comparator is first enabled, the comparator output and interrupt flag are not guaranteed to be stable for 10 microseconds. The corresponding comparator interrupt should not be enabled during that time, and the comparator interrupt flag must be cleared before the interrupt is enabled in order to prevent an immediate interrupt service.

CMPn	Addres	s: ACh for C	CMP1, A	Dh for CN	1P2						Reset Value: ()0h	
	Not Bit	Addressabl	е										
		_	7	6	5	4	3	2	1	0	_		
			_	_	CEn	CPn	CNn	OEn	COn	CMFn			
Bľ	т	SYMBOL	FUN	CTION									
CN	/IPn.7, 6	_	Rese	erved for f	uture use.	Should n	ot be set t	o 1 by use	er progran	ıs.			
CN	/IPn.5	CEn	Com Com	mparator enable. When set by software, the corresponding comparator function is enabled. mparator output is stable 10 microseconds after CEn is first set.									
CN	/IPn.4	CPn	Com 1, Cl	parator po NnB is se	sitive inpu lected as	ut select. N the positiv	When 0, C e compara	INnA is se ator input.	elected as	the positi	ive comparator inpu	it. When	
CN	/IPn.3	CNn	Com the r nega	parator ne legative co ltive comp	egative inp omparator arator inp	out select. input. Wh ut.	When 0, t ien 1, the	he compa internal co	arator refe	rence pin reference	CMPREF is selected as	ed as the	
CN	/IPn.2	OEn	Outp enab	out enable. bled (CEn	When 1, = 1). This	the compa output is a	arator outp asynchron	out is conr ous to the	nected to the CPU clo	the CMPn ck.	pin if the comparat	or is	
CN	/IPn.1	COn	Com com	parator ou parator is	itput, synd disabled (hronized CEn = 0).	to the CPI	J clock to	allow rea	ding by so	oftware. Cleared wh	en the	
CM	/IPn.0	CMFn	Com state softv	parator in . This bit v vare and v	terrupt flag will cause when the c	g. This bit a hardwa omparato	is set by h re interrup r is disable	ardware v t if enable ed (CEn =	whenever d and of s 0).	the comp sufficient p	arator output COn o priority. Cleared by	changes	
												SU01152	

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

Figure 3. Comparator Input and Output Connections

Figure 4. Comparator Configurations

87LPC762

Internal Reference Voltage

An internal reference voltage generator may supply a default reference when a single comparator input pin is used. The value of the internal reference voltage, referred to as V_{ref} , is 1.28 V ±10%.

Comparator Interrupt

Each comparator has an interrupt flag CMFn contained in its configuration register. This flag is set whenever the comparator output changes state. The flag may be polled by software or may be used to generate an interrupt. The interrupt will be generated when the corresponding enable bit ECn in the IEN1 register is set and the interrupt system is enabled via the EA bit in the IEN0 register.

Comparators and Power Reduction Modes

Either or both comparators may remain enabled when Power Down or Idle mode is activated. The comparators will continue to function in the power reduction mode. If a comparator interrupt is enabled, a change of the comparator output state will generate an interrupt and wake up the processor. If the comparator output to a pin is enabled, the pin should be configured in the push-pull mode in order to obtain fast switching times while in power down mode. The reason is that with the oscillator stopped, the temporary strong pull-up that normally occurs during switching on a quasi-bidirectional port pin does not take place.

Comparators consume power in Power Down and Idle modes, as well as in the normal operating mode. This fact should be taken into account when system power consumption is an issue.

Comparator Configuration Example

The code shown in Figure 5 is an example of initializing one comparator. Comparator 1 is configured to use the CIN1A and CMPREF inputs, outputs the comparator result to the CMP1 pin, and generates an interrupt when the comparator output changes.

The interrupt routine used for the comparator must clear the interrupt flag (CMF1 in this case) before returning.

a		
Cmplnit:		
mov	PTOAD,#30h	; Disable digital inputs on pins that are used
		; for analog functions: CIN1A, CMPREF.
anl	POM2,#0cfh	; Disable digital outputs on pins that are used
orl	P0M1,#30h	; for analog functions: CIN1A, CMPREF.
mov	CMP1,#24h	; Turn on comparator 1 and set up for:
		; - Positive input on CIN1A.
		; - Negative input from CMPREF pin.
		; - Output to CMP1 pin enabled.
call	delay10us	; The comparator has to start up for at
		; least 10 microseconds before use.
anl	CMP1,#0feh	; Clear comparator 1 interrupt flag.
setb	EC1	; Enable the comparator 1 interrupt. The
		; priority is left at the current value.
setb	EA	; Enable the interrupt system (if needed).
ret		; Return to caller.
		SU01189

Figure 5.

87LPC762

I²C Serial Interface

The I^2C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

- Bidirectional data transfer between masters and slaves.
- Serial addressing of slaves (no added wiring).
- Acknowledgment after each transferred byte.
- Multimaster bus.
- Arbitration between simultaneously transmitting masters without corruption of serial data on bus.

The I²C subsystem includes hardware to simplify the software required to drive the I²C bus. The hardware is a single bit interface which in addition to including the necessary arbitration and framing error checks, includes clock stretching and a bus timeout timer. The interface is synchronized to software either through polled loops or interrupts.

Refer to the application note AN422, entitled "Using the 8XC751 Microcontroller as an I²C Bus Master" for additional discussion of the 8xC76x I²C interface and sample driver routines.

The 87LPC762 I^2C implementation duplicates that of the 87C751 and 87C752 except for the following details:

- The interrupt vector addresses for both the I²C interrupt and the Timer I interrupt.
- The I²C SFR addresses (I2CON, I2CFG, I2DAT).
- The location of the I²C interrupt enable bit and the name of the SFR it is located within (EI2 is Bit 0 in IEN1).
- The location of the Timer I interrupt enable bit and the name of the SFR it is located within (ETI is Bit 7 in IEN1).
- The I²C and Timer I interrupts have a settable priority.

Timer I is used to both control the timing of the I^2C bus and also to detect a "bus locked" condition, by causing an interrupt when nothing happens on the I^2C bus for an inordinately long period of time while a transmission is in progress. If this interrupt occurs, the program has the opportunity to attempt to correct the fault and resume I^2C operation.

Six time spans are important in I²C operation and are insured by timer I:

- The MINIMUM HIGH time for SCL when this device is the master.
- The MINIMUM LOW time for SCL when this device is a master. This is not very important for a single-bit hardware interface like this one, because the SCL low time is stretched until the software responds to the I²C flags. The software response time normally meets or exceeds the MIN LO time. In cases where the software responds within MIN HI + MIN LO) time, timer I will ensure that the minimum time is met.
- The MINIMUM SCL HIGH TO SDA HIGH time in a stop condition.
- The MINIMUM SDA HIGH TO SDA LOW time between I²C stop and start conditions (4.7ms, see I²C specification).
- The MINIMUM SDA LOW TO SCL LOW time in a start condition.
- The MAXIMUM SCL CHANGE time while an I²C frame is in progress. A frame is in progress between a start condition and the following stop condition. This time span serves to detect a lack of software response on this device as well as external I²C

problems. SCL "stuck low" indicates a faulty master or slave. SCL "stuck high" may mean a faulty device, or that noise induced onto the I²C bus caused all masters to withdraw from I²C arbitration.

The first five of these times are 4.7ms (see I^2C specification) and are covered by the low order three bits of timer I. Timer I is clocked by the 87LPC762 CPU clock. Timer I can be pre-loaded with one of four values to optimize timing for different oscillator frequencies. At lower frequencies, software response time is increased and will degrade maximum performance of the I^2C bus. See special function register I2CFG description for prescale values (CT0, CT1).

The MAXIMUM SCL CHANGE time is important, but its exact span is not critical. The complete 10 bits of timer I are used to count out the maximum time. When I²C operation is enabled, this counter is cleared by transitions on the SCL pin. The timer does not run between I²C frames (i.e., whenever reset or stop occurred more recently than the last start). When this counter is running, it will carry out after 1020 to 1023 machine cycles have elapsed since a change on SCL. A carry out causes a hardware reset of the I²C interface and generates an interrupt if the Timer I interrupt is enabled. In cases where the bus hang-up is due to a lack of software response by this device, the reset releases SCL and allows I²C operation among other devices to continue.

Timer I is enabled to run, and will reset the I²C interface upon overflow, if the TIRUN bit in the I2CFG register is set. The Timer I interrupt may be enabled via the ETI bit in IEN1, and its priority set by the PTIH and PTI bits in the IP1H and IP1 registers respectively.

I²C Interrupts

If I²C interrupts are enabled (EA and EI2 are both set to 1), an I²C interrupt will occur whenever the ATN flag is set by a start, stop, arbitration loss, or data ready condition (refer to the description of ATN following). In practice, it is not efficient to operate the I²C interface in this fashion because the I²C interrupt service routine would somehow have to distinguish between hundreds of possible conditions. Also, since I²C can operate at a fairly high rate, the software may execute faster if the code simply waits for the I²C interface.

Typically, the l^2C interrupt should only be used to indicate a start condition at an idle slave device, or a stop condition at an idle master device (if it is waiting to use the l^2C bus). This is accomplished by enabling the l^2C interrupt only during the aforementioned conditions.

Reading I2CON

- RDAT The data from SDA is captured into "Receive DATa" whenever a rising edge occurs on SCL. RDAT is also available (with seven low-order zeros) in the I2DAT register. The difference between reading it here and there is that reading I2DAT clears DRDY, allowing the I²C to proceed on to another bit. Typically, the first seven bits of a received byte are read from I2DAT, while the 8th is read here. Then I2DAT can be written to send the Acknowledge bit and clear DRDY.
- ATN "ATteNtion" is 1 when one or more of DRDY, ARL, STR, or STP is 1. Thus, ATN comprises a single bit that can be tested to release the I²C service routine from a "wait loop."
- DRDY "Data ReaDY" (and thus ATN) is set when a rising edge occurs on SCL, except at idle slave. DRDY is cleared by writing CDR = 1, or by writing or reading the I2DAT register. The following low period on SCL is stretched until the program responds by clearing DRDY.

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

I2CON	Addres	s: D8h									Reset Value: 81h
	Bit Add	dressable ¹	_		_					•	
		Г	7	6	5	4	3	2	1	0	1
		READ	RDAT	ATN	DRDY	ARL	STR	STP	MASTER		
		WRITE	CXA	IDLE	CDR	CARL	CSTR	CSTP	XSTR	XSTP	
Bľ	T	SYMBOL	. FUN	CTION							-
120	CON.7	RDAT	Read	I: the mos	t recently	received of	data bit.				
	"	CXA	Write	clears th	ie transmi	t active fla	ıg.				
120	CON.6	ATN	Read	l: ATN = 1	if any of t	the flags D	DRDY, ARI	_, STR, or	r STP = 1.		
	**	IDLE	Write	: in the I ² eded agai	C slave m n.	ode, writir	ng a 1 to th	nis bit cau	ses the I ² C	hardware	e to ignore the bus until it
120	CON.5	DRDY	Read	l: Data Re	ady flag,	set when t	there is a r	rising edg	e on SCL.		
	"	CDR	Write	: writing a	1 to this b	oit clears t	the DRDY	flag.			
120	CON.4	ARL	Read	1: Arbitratio	on Loss fla	ag, set wh	ien arbitra	tion is los	t while in the	e transmit	mode.
	**	CARL	Write	: writing a	1 to this I	oit clears t	the CARL	flag.			
120	CON.3	STR	Read	I: Start flag	g, set whe	en a start c	condition is	s detected	d at a maste	r or non-ie	dle slave.
	**	CSTR	Write	: writing a	1 to this I	oit clears t	the STR fla	ag.			
120	CON.2	STP	Read	l: Stop flao	g, set whe	n a stop c	ondition is	detected	l at a master	r or non-ic	dle slave.
	"	CSTP	Write	: writing a	1 to this I	oit clears t	the STP fla	ag.			
120	CON.1	MASTER	Read	I: indicates	s whether	this devic	e is currer	ntly as bus	s master.		
	"	XSTR	Write	: writing a	1 to this b	oit causes	a repeate	d start co	ndition to be	e generate	ed.
120	CON.0	_	Read	l: undefine	∍d.						
	**	XSTP	Write	: writing a	1 to this I	oit causes	a stop co	ndition to	be generate	∍d.	SU01155

Figure 6. I²C Control Register (I2CON)

I2DAT	Addres Not Bit	s: D9h Addressab	ble							
			7	6	5	4	3	2	1	0
		READ	RDAT	_	_	_	_	_	_	_
		WRITE	XDAT	_	_	_	_	_		_
E	ыт	SYMBOL	. FUN	CTION						
Ľ	2DAT.7	RDAT	Read I2DA	l: the mos T also cle	t recently ars DRDY	received of and the	data bit, ca Fransmit A	aptured fro ctive state	om SDA at e e.	every risir
	"	XDAT	Write Trans	: sets the smit Active	data for th e state.	ne next tra	ansmitted	bit. Writing	g I2DAT als	o clears D
Ľ	2DAT.6–0	-	Unus	ed.						

Figure 7. I²C Data Register (I2DAT)

Checking ATN and DRDY

When a program detects ATN = 1, it should next check DRDY. If DRDY = 1, then if it receives the last bit, it should capture the data from RDAT (in I2DAT or I2CON). Next, if the next bit is to be sent, it should be written to I2DAT. One way or another, it should clear DRDY and then return to monitoring ATN. Note that if any of ARL,

STR, or STP is set, clearing DRDY will not release SCL to high, so that the I^2C will not go on to the next bit. If a program detects ATN = 1, and DRDY = 0, it should go on to examine ARL, STR, and STP.

87LPC762

ARL "Arbitration Loss" is 1 when transmit Active was set, but this device lost arbitration to another transmitter. Transmit Active is cleared when ARL is 1. There are four separate cases in which ARL is set.

1. If the program sent a 1 or repeated start, but another device sent a 0, or a stop, so that SDA is 0 at the rising edge of SCL. (If the other device sent a stop, the setting of ARL will be followed shortly by STP being set.)

2. If the program sent a 1, but another device sent a repeated start, and it drove SDA low before SCL could be driven low. (This type of ARL is always accompanied by STR = 1.)

3. In master mode, if the program sent a repeated start, but another device sent a 1, and it drove SCL low before this device could drive SDA low.

4. In master mode, if the program sent stop, but it could not be sent because another device sent a 0.

- STR "STaRt" is set to a 1 when an I²C start condition is detected at a non-idle slave or at a master. (STR is not set when an idle slave becomes active due to a start bit; the slave has nothing useful to do until the rising edge of SCL sets DRDY.)
- STP "SToP" is set to 1 when an I²C stop condition is detected at a non-idle slave or at a master. (STP is not set for a stop condition at an idle slave.)

MASTER "MASTER" is 1 if this device is currently a master on the I²C. MASTER is set when MASTRQ is 1 and the bus is not busy (i.e., if a start bit hasn't been received since reset or a "Timer I" time-out, or if a stop has been received since the last start). MASTER is cleared when ARL is set, or after the software writes MASTRQ = 0 and then XSTP = 1.

Writing I2CON

Typically, for each bit in an I^2C message, a service routine waits for ATN = 1. Based on DRDY, ARL, STR, and STP, and on the current bit position in the message, it may then write I2CON with one or more of the following bits, or it may read or write the I2DAT register.

CXA Writing a 1 to "Clear Xmit Active" clears the Transmit Active state. (Reading the I2DAT register also does this.)

Regarding Transmit Active

Transmit Active is set by writing the I2DAT register, or by writing I2CON with XSTR = 1 or XSTP = 1. The I²C interface will only drive the SDA line low when Transmit Active is set, and the ARL bit will only be set to 1 when Transmit Active is set. Transmit Active is cleared by reading the I2DAT register, or by writing I2CON with CXA = 1. Transmit Active is automatically cleared when ARL is 1.

- IDLE Writing 1 to "IDLE" causes a slave's I²C hardware to ignore the I²C until the next start condition (but if MASTRQ is 1, then a stop condition will cause this device to become a master).
- CDR Writing a 1 to "Clear Data Ready" clears DRDY. (Reading or writing the I2DAT register also does this.)
- CARL Writing a 1 to "Clear Arbitration Loss" clears the ARL bit.
- CSTR Writing a 1 to "Clear STaRt" clears the STR bit.
- CSTP Writing a 1 to "Clear SToP" clears the STP bit. Note that if one or more of DRDY, ARL, STR, or STP is 1, the low time of SCL is stretched until the service routine responds by clearing them.
- XSTR Writing 1s to "Xmit repeated STaRt" and CDR tells the I²C hardware to send a repeated start condition. This should only be at a master. Note that XSTR need not and should not be used to send an "initial" (non-repeated) start; it is sent automatically by the I²C hardware. Writing XSTR = 1 includes the effect of writing I2DAT with XDAT = 1; it sets Transmit Active and releases SDA to high during the SCL low time. After SCL goes high, the I²C hardware waits for the suitable minimum time and then drives SDA low to make the start condition.
- XSTP Writing 1s to "Xmit SToP" and CDR tells the I²C hardware to send a stop condition. This should only be done at a master. If there are no more messages to initiate, the service routine should clear the MASTRQ bit in I2CFG to 0 before writing XSTP with 1. Writing XSTP = 1 includes the effect of writing I2DAT with XDAT = 0; it sets Transmit Active and drives SDA low during the SCL low time. After SCL goes high, the I²C hardware waits for the suitable minimum time and then releases SDA to high to make the stop condition.

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

I2CFG	Addres	s: C8h								Reset Value: 00h
	Bit Add	ressable								
		7	6	5	4	3	2	1	0	
		SLAV	EN MASTRQ	CLRTI	TIRUN	_	_	CT1	CT0	
										-
В	IT	SYMBOL	FUNCTION							
12	CFG.7	SLAVEN	Slave Enable. MASTRQ are time-out.	Writing a), the I ² C	1 this bit e hardware	nables the is disable	e slave fur d. This bit	nctions of t is cleared	he I ² C sub to 0 by res	system. If SLAVEN and set and by an I ² C
12	CFG.6	MASTRQ	Master Request progress when start condition When a maste MASTRQ is clo	st. Writing this bit is is sent an r wishes t eared by a	a 1 to this changed d DRDY is o release an I ² C time	bit reque from 0 to s set (thus mastershi e-out.	ests maste 1, action is making A p status o	rship of the s delayed u ATN = 1 and f the I ² C, it	e I ² C bus. until a stop d generatin writes a 1	If a transmission is in condition is detected. A ng an I ² C interrupt). to XSTP in I2CON.
12	CFG.5	CLRTI	Writing a 1 to t	his bit clea	ars the Tin	ner I overf	low flag. 1	This bit pos	ition alway	vs reads as a 0.
12	CFG.4	TIRUN	Writing a 1 to t and MASTER,	his bit lets this bit de	Timer I ru	in; a zero operationa	stops and al modes a	l clears it. T as shown ir	Together w n Table 1.	ith SLAVEN, MASTRQ,
12	CFG.2, 3	_	Reserved for f	uture use.	Should no	ot be set t	o 1 by use	er programs	S.	
12	CFG.1, 0	CT1, CT0	These two bits time of SCL wi controls both c	are progr nen this de f these pa	ammed as evice is a i arameters,	s a functio naster on and also	n of the C the I ² C. T the timing	PU clock r The time va for stop ar	ate, to opti Ilue detern nd start co	mize the MIN HI and LO nined by these bits nditions.
										SU01157

Figure 8. I²C Configuration Register (I2CFG)

Regarding Software Response Time

Because the 87LPC762 can run at 20 MHz, and because the I^2C interface is optimized for high-speed operation, it is quite likely that an I^2C service routine will sometimes respond to DRDY (which is set at a rising edge of SCL) and write I2DAT before SCL has gone low again. If XDAT were applied directly to SDA, this situation would produce an I^2C protocol violation. The programmer need not worry about this possibility because XDAT is applied to SDA only when SCL is low.

Conversely, a program that includes an I²C service routine may take a long time to respond to DRDY. Typically, an I²C routine operates on a flag-polling basis during a message, with interrupts from other peripheral functions enabled. If an interrupt occurs, it will delay the response of the I²C service routine. The programmer need not worry about this very much either, because the I²C hardware stretches the SCL low time until the service routine responds. The only constraint on the response is that it must not exceed the Timer I time-out.

Values to be used in the CT1 and CT0 bits are shown in Table 2. To allow the l^2C bus to run at the maximum rate for a particular oscillator frequency, compare the actual oscillator rate to the f OSC max column in the table. The value for CT1 and CT0 is found in the

first line of the table where CPU clock max is greater than or equal to the actual frequency.

Table 2 also shows the machine cycle count for various settings of CT1/CT0. This allows calculation of the actual minimum high and low times for SCL as follows:

SCL min high/low time (in microseconds) = $\frac{6 * Min Time Count}{CPU clock}$ (in MHz)

For instance, at an 8 MHz frequency, with CT1/CT0 set to 1 0, the minimum SCL high and low times will be 5.25 $\mu s.$

Table 2 also shows the Timer I timeout period (given in machine cycles) for each CT1/CT0 combination. The timeout period varies because of the way in which minimum SCL high and low times are measured. When the I^2C interface is operating, Timer I is pre-loaded at every SCL transition with a value dependent upon CT1/CT0. The pre-load value is chosen such that a minimum SCL high or low time has elapsed when Timer I reaches a count of 008 (the actual value pre-loaded into Timer I is 8 minus the machine cycle count).

87LPC762

Table 1. Interaction of TIRUN with SLAVEN, MASTRQ, and MASTER

SLAVEN, MASTRQ, MASTER	TIRUN	OPERATING MODE
All 0	0	The I ² C interface is disabled. Timer I is cleared and does not run. This is the state assumed after a reset. If an I ² C application wants to ignore the I ² C at certain times, it should write SLAVEN, MASTRQ, and TIRUN all to zero.
All 0	1	The I ² C interface is disabled.
Any or all 1	0	The I ² C interface is enabled. The 3 low-order bits of Timer I run for min-time generation, but the hi-order bits do not, so that there is no checking for I ² C being "hung." This configuration can be used for very slow I ² C operation.
Any or all 1	1	The I ² C interface is enabled. Timer I runs during frames on the I ² C, and is cleared by transitions on SCL, and by Start and Stop conditions. This is the normal state for I ² C operation.

Table 2. CT1, CT0 Values

CT1, CT0	CT1, CT0 Min Time Count (Machine Cycles)		Timeout Period (Machine Cycles)
1 0	7	8.4 MHz	1023
0 1	6	7.2 MHz	1022
0 0	5	6.0 MHz	1021
11	4	4.8 MHz	1020

Interrupts

The 87LPC762 uses a four priority level interrupt structure. This allows great flexibility in controlling the handling of the 87LPC762's many interrupt sources. The 87LPC762 supports up to 12 interrupt sources.

Each interrupt source can be individually enabled or disabled by setting or clearing a bit in registers IEN0 or IEN1. The IEN0 register also contains a global disable bit, EA, which disables all interrupts at once.

Each interrupt source can be individually programmed to one of four priority levels by setting or clearing bits in the IPO, IPOH, IP1, and IP1H registers. An interrupt service routine in progress can be interrupted by a higher priority interrupt, but not by another interrupt

Table 3. Summary of Interrupts

of the same or lower priority. The highest priority interrupt service cannot be interrupted by any other interrupt source. So, if two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve simultaneous requests of the same priority level.

Table 3 summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits, arbitration ranking, and whether each interrupt may wake up the CPU from Power Down mode.

Description	Interrupt Flag Bit(s)	Vector Address	Interrupt Enable Bit(s)	Interrupt Priority	Arbitration Ranking	Power Down Wakeup
External Interrupt 0	IE0	0003h	EX0 (IEN0.0)	IP0H.0, IP0.0	1 (highest)	Yes
Timer 0 Interrupt	TF0	000Bh	ET0 (IEN0.1)	IP0H.1, IP0.1	4	No
External Interrupt 1	IE1	0013h	EX1 (IEN0.2)	IP0H.2, IP0.2	6	Yes
Timer 1 Interrupt	TF1	001Bh	ET1 (IEN0.3)	IP0H.3, IP0.3	9	No
Serial Port Tx and Rx	TI & RI	0023h	ES (IEN0.4)	IP0H.4, IP0.4	11	No
Brownout Detect	BOD	002Bh	EBO (IEN0.5)	IP0H.5, IP0.5	2	Yes
I ² C Interrupt	ATN	0033h	EI2 (IEN1.0)	IP1H.0, IP1.0	5	No
KBI Interrupt	KBF	003Bh	EKB (IEN1.1)	IP1H.1, IP1.1	7	Yes
Comparator 2 interrupt	CMF2	0043h	EC2 (IEN1.2)	IP1H.2, IP1.2	10	Yes
Watchdog Timer	WDOVF	0053h	EWD (IEN0.6)	IP0H.6, IP0.6	3	Yes
Comparator 1 interrupt	CMF1	0063h	EC1 (IEN1.5)	IP1H.5, IP1.5	8	Yes
Timer I interrupt	_	0073h	ETI (IEN1.7)	IP1H.7, IP1.7	12 (lowest)	No

87LPC762

External Interrupt Inputs

The 87LPC762 has two individual interrupt inputs as well as the Keyboard Interrupt function. The latter is described separately elsewhere in this section. The two interrupt inputs are identical to those present on the standard 80C51 microcontroller.

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITn = 0, external interrupt n is triggered by a detected low at the $\overline{\rm INTn}$ pin. If ITn = 1, external interrupt n is edge triggered. In this mode if successive samples of the $\overline{\rm INTn}$ pin show a high in one cycle and a low in the next cycle, interrupt request flag IEn in TCON is set, causing an interrupt request.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 6 CPU Clocks to ensure proper sampling. If the external interrupt is

transition-activated, the external source has to hold the request pin high for at least one machine cycle, and then hold it low for at least one machine cycle. This is to ensure that the transition is seen and that interrupt request flag IEn is set. IEn is automatically cleared by the CPU when the service routine is called.

If the external interrupt is level-activated, the external source must hold the request active until the requested interrupt is actually generated. If the external interrupt is still asserted when the interrupt service routine is completed another interrupt will be generated. It is not necessary to clear the interrupt flag IEn when the interrupt is level sensitive, it simply tracks the input pin level.

If an external interrupt is enabled when the 87LPC762 is put into Power Down or Idle mode, the interrupt will cause the processor to wake up and resume operation. Refer to the section on Power Reduction Modes for details.

Figure 9. Interrupt Sources, Interrupt Enables, and Power Down Wakeup Sources

87LPC762

I/O Ports

The 87LPC762 has 3 I/O ports, port 0, port 1, and port 2. The exact number of I/O pins available depend upon the oscillator and reset options chosen. At least 15 pins of the 87LPC762 may be used as I/Os when a two-pin external oscillator and an external reset circuit are used. Up to 18 pins may be available if fully on-chip oscillator and reset configurations are chosen.

All but three I/O port pins on the 87LPC762 may be software configured to one of four types on a bit-by-bit basis, as shown in Table 4. These are: quasi-bidirectional (standard 80C51 port outputs), push-pull, open drain, and input only. Two configuration registers for each port choose the output type for each port pin.

Table 4. Port Output Configuration Settings

PxM1.y	PxM2.y	Port Output Mode			
0	0	Quasi-bidirectional			
0	1	Push-Pull			
1	0	Input Only (High Impedance)			
1	1	Open Drain			

Quasi-Bidirectional Output Configuration

The default port output configuration for standard 87LPC762 I/O ports is the quasi-bidirectional output that is common on the 80C51 and most of its derivatives. This output type can be used as both an

input and output without the need to reconfigure the port. This is possible because when the port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features are somewhat similar to an open drain output except that there are three pull-up transistors in the quasi-bidirectional output that serve different purposes.

One of these pull-ups, called the "very weak" pull-up, is turned on whenever the port latch for the pin contains a logic 1. The very weak pull-up sources a very small current that will pull the pin high if it is left floating.

A second pull-up, called the "weak" pull-up, is turned on when the port latch for the pin contains a logic 1 and the pin itself is also at a logic 1 level. This pull-up provides the primary source current for a quasi-bidirectional pin that is outputting a 1. If a pin that has a logic 1 on it is pulled low by an external device, the weak pull-up turns off, and only the very weak pull-up remains on. In order to pull the pin low under these conditions, the external device has to sink enough current to overpower the weak pull-up and take the voltage on the port pin below its input threshold.

The third pull-up is referred to as the "strong" pull-up. This pull-up is used to speed up low-to-high transitions on a quasi-bidirectional port pin when the port latch changes from a logic 0 to a logic 1. When this occurs, the strong pull-up turns on for a brief time, two CPU clocks, in order to pull the port pin high quickly. Then it turns off again.

The quasi-bidirectional port configuration is shown in Figure 10.

Figure 10. Quasi-Bidirectional Output

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

Open Drain Output Configuration

The open drain output configuration turns off all pull-ups and only drives the pull-down transistor of the port driver when the port latch contains a logic 0. To be used as a logic output, a port configured in this manner must have an external pull-up, typically a resistor tied to V_{DD} . The pull-down for this mode is the same as for the quasi-bidirectional mode.

The open drain port configuration is shown in Figure 11.

Push-Pull Output Configuration

The push-pull output configuration has the same pull-down structure as both the open drain and the quasi-bidirectional output modes, but provides a continuous strong pull-up when the port latch contains a logic 1. The push-pull mode may be used when more source current is needed from a port output.

The push-pull port configuration is shown in Figure 12.

The three port pins that cannot be configured are P1.2, P1.3, and P1.5. The port pins P1.2 and P1.3 are permanently configured as open drain outputs. They may be used as inputs by writing ones to their respective port latches. P1.5 may be used as a Schmitt trigger input if the 87LPC762 has been configured for an internal reset and is not using the external reset input function RST.

Additionally, port pins P2.0 and P2.1 are disabled for both input and output if one of the crystal oscillator options is chosen. Those options are described in the Oscillator section.

The value of port pins at reset is determined by the PRHI bit in the UCFG1 register. Ports may be configured to reset high or low as needed for the application. When port pins are driven high at reset, they are in quasi-bidirectional mode and therefore do not source large amounts of current.

Every output on the 87LPC762 may potentially be used as a 20 mA sink LED drive output. However, there is a maximum total output current for all ports which must not be exceeded.

All ports pins of the 87LPC762 have slew rate controlled outputs. This is to limit noise generated by quickly switching output signals. The slew rate is factory set to approximately 10 ns rise and fall times.

The bits in the P2M1 register that are not used to control configuration of P2.1 and P2.0 are used for other purposes. These bits can enable Schmitt trigger inputs on each I/O port, enable toggle outputs from Timer 0 and Timer 1, and enable a clock output if either the internal RC oscillator or external clock input is being used. The last two functions are described in the Timer/Counters and Oscillator sections respectively. The enable bits for all of these functions are shown in Figure 13.

Each I/O port of the 87LPC762 may be selected to use TTL level inputs or Schmitt inputs with hysteresis. A single configuration bit determines this selection for the entire port. Port pins P1.2, P1.3, and P1.5 always have a Schmitt trigger input.

Figure 11. Open Drain Output

Figure 12. Push-Pull Output

Low power, low price, low pin count (20 pin) microcontroller with 2 kbyte OTP

2M1	Address: A	4h							I	Reset Value: 00h
	Not Bit Add	ressable								
		7	6	5	4	3	2	1	0	
		P2S	P1S	P0S	ENCLK	T1OE	T0DE	(P2M1.1)	(P2M1.0)	
Bľ	BIT SYMBOL FUNCTION									
P2	2M1.7	P2S	When P2S =	When P2S = 1, this bit enables Schmitt trigger inputs on Port 2.						
P2	2M1.6	P1S	When P1S =	1, this bit	t enables S	chmitt trig	ger inputs	s on Port 1.		
P2	2M1.5	P0S	When P0S =	1, this bit	t enables S	chmitt trig	ger inputs	s on Port 0.		
P2	2M1.4	ENCLK	When ENCL output is ena	K is set a bled on th	nd the 87Ll ne X2 pin (I	PC762 is (P2.0). Ref	configured er to the C	d to use the c Oscillator sec	on-chip RC o	oscillator, a clock ails.
P2	2M1.3	T1OE	When set, th one half of th	e P0.7 pir ie Timer 1	n is toggled overflow r	l wheneve ate. Refer	r Timer 1 to the Tir	overflows. Tl ner/Counters	he output from section for	equency is therefore details.
P2	2M1.2	TOOE	When set, the P1.2 pin is toggled whenever Timer 0 overflows. The output frequency is therefore one half of the Timer 0 overflow rate. Refer to the Timer/Counterssection for details.							
P2	2M1.1, P2M1.0) —	These bits, a P2.1 and P2	long with .0 respect	the matchi tively, as sh	ng bits in Nown in Ta	the P2M2 ble 4.	register, con	trol the outp	out configuration of
										SU01222

Figure 13. Port 2 Mode Register 1 (P2M1)

Keyboard Interrupt (KBI)

The Keyboard Interrupt function is intended primarily to allow a single interrupt to be generated when any key is pressed on a keyboard or keypad connected to specific pins of the 87LPC762, as shown in Figure 14. This interrupt may be used to wake up the CPU from Idle or Power Down modes. This feature is particularly useful in handheld, battery powered systems that need to carefully manage power consumption yet also need to be convenient to use.

The 87LPC762 allows any or all pins of port 0 to be enabled to cause this interrupt. Port pins are enabled by the setting of bits in

the KBI register, as shown in Figure 15. The Keyboard Interrupt Flag (KBF) in the AUXR1 register is set when any enabled pin is pulled low while the KBI interrupt function is active. An interrupt will generated if it has been enabled. Note that the KBF bit must be cleared by software.

Due to human time scales and the mechanical delay associated with keyswitch closures, the KBI feature will typically allow the interrupt service routine to poll port 0 in order to determine which key was pressed, even if the processor has to wake up from Power Down mode. Refer to the section on Power Reduction Modes for details.

2001 Oct 26

87LPC762

Figure 14. Keyboard Interrupt

KBI	Addre	ess: 86h								Reset Value: 00h		
	Not B	it Addressable	9									
		_		_	_							
		7	6	5	4	3	2	1	0			
		KBI	.7 KBI.6	KBI.5	KBI.4	KBI.3	KBI.2	KBI.1	KBI.0			
	BIT	SYMBOL	FUNCTION									
	KBI.7	KBI.7	When set, en	hen set, enables P0.7 as a cause of a Keyboard Interrupt.								
	KBI.6	KBI.6	When set, en	/hen set, enables P0.6 as a cause of a Keyboard Interrupt.								
	KBI.5	KBI.5	When set, en	/hen set, enables P0.5 as a cause of a Keyboard Interrupt.								
	KBI.4	KBI.4	When set, en	ables P0.4	as a caus	e of a Key	board Inte	errupt.				
	KBI.3	KBI.3	When set, en	ables P0.3	as a caus	e of a Key	board Inte	errupt.				
	KBI.2	KBI.2	When set, en	ables P0.2	as a caus	e of a Key	board Inte	errupt.				
	KBI.1	KBI.1	When set, en	ables P0.1	as a caus	e of a Key	board Inte	errupt.				
	KBI.0	KBI.0 KBI.0 When set, enables P0.0 as a cause of a Keyboard Interrupt.										
	Note: the l	Keyboard Inte	rrupt must be en	abled in or	der for the	e settings	of the KBI	register to	be effectiv	e. The interrupt flag		
	(1101-) 15 10	Jualeu al DIL 7								SU01164		

Figure 15. Keyboard Interrupt Register (KBI)

Oscillator

The 87LPC762 provides several user selectable oscillator options, allowing optimization for a range of needs from high precision to lowest possible cost. These are configured when the EPROM is

programmed. Basic oscillator types that are supported include: low, medium, and high speed crystals, covering a range from 20 kHz to 20 MHz; ceramic resonators; and on-chip RC oscillator.

Low Frequency Oscillator Option

This option supports an external crystal in the range of 20 kHz to 100 kHz.

Table 5 shows capacitor values that may be used with a quartz crystal in this mode.

Table 5. Recommended oscillator capacitors for use with the low frequency oscillator option

Oscillator		V _{DD} = 2.7 to 4.5 V		V _{DD} = 4.5 to 6.0 V			
Frequency	Lower Limit	Optimal Value	Upper Limit	Lower Limit	Optimal Value	Upper Limit	
20 kHz	15 pF	15 pF	33 pF	33 pF	33 pF	47 pF	
32 kHz	15 pF	15 pF	33 pF	33 pF	33 pF	47 pF	
100 kHz	15 pF	15 pF	33 pF	15 pF	15 pF	33 pF	

Medium Frequency Oscillator Option

This option supports an external crystal in the range of 100 kHz to 4 MHz. Ceramic resonators are also supported in this configuration.

Table 6 shows capacitor values that may be used with a quartz crystal in this mode.

Table 6. Recommended oscillator capacitors for use with the medium frequency oscillator option

Oscillator Frequency	V _{DD} = 2.7 to 4.5 V						
Oscillator i requeiley	Lower Limit	Optimal Value	Upper Limit				
100 kHz	33 pF	33 pF	47 pF				
1 MHz	15 pF	15 pF	33 pF				
4 MHz	15 pF	15 pF	33 pF				

High Frequency Oscillator Option

This option supports an external crystal in the range of 4 to 20 MHz. Ceramic resonators are also supported in this configuration.

Table 7 shows capacitor values that may be used with a quartz crystal in this mode.

Table 7. Recommended oscillator capacitors for use with the high frequency oscillator option

Oscillator Frequency		V _{DD} = 2.7 to 4.5 V	_	V _{DD} = 4.5 to 6.0 V			
	Lower Limit	Optimal Value	Upper Limit	Lower Limit	Optimal Value	Upper Limit	
4 MHz	15 pF	33 pF	47 pF	15 pF	33 pF	68 pF	
8 MHz	15 pF	15 pF	33 pF	15 pF	33 pF	47 pF	
16 MHz	-	-	-	15 pF	15 pF	33 pF	
20 MHz	-	_	_	15 pF	15 pF	33 pF	

On-Chip RC Oscillator Option

The on-chip RC oscillator option has a typical frequency of 6 MHz and can be divided down for slower operation through the use of the DIVM register. Note that some devices have 10% tolerance and others 25% tolerance at this time. For on-chip oscillator tolerance see Electrical Characteristics table. A clock output on the X2/P2.0 pin may be enabled when the on-chip RC oscillator is used.

External Clock Input Option

In this configuration, the processor clock is input from an external source driving the X1/P2.1 pin. The rate may be from 0 Hz up to 20 MHz when V_{DD} is above 4.5 V and up to 10 MHz when V_{DD} is below 4.5 V. When the external clock input mode is used, the X2/P2.0

pin may be used as a standard port pin. A clock output on the X2/P2.0 pin may be enabled when the external clock input is used.

Clock Output

The 87LPC762 supports a clock output function when either the on-chip RC oscillator or external clock input options are selected. This allows external devices to synchronize to the 87LPC762. When enabled, via the ENCLK bit in the P2M1 register, the clock output appears on the X2/CLKOUT pin whenever the on-chip oscillator is running, including in Idle mode. The frequency of the clock output is 1/6 of the CPU clock rate. If the clock output is not needed in Idle mode, it may be turned off prior to entering Idle, saving additional power. The clock output may also be enabled when the external clock input option is selected.